• Title/Summary/Keyword: Self-purification

Search Result 117, Processing Time 0.028 seconds

A Study on Measures for Water Quality Improvement in Irrigation Reservoir (농업용 저수지의 수질개선방안에 관한 연구)

  • 박병흔;장정렬;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.500-507
    • /
    • 1998
  • The measures for water quality improvement have been planned to introduce for several reservoirs which were badly polluted among the sites included in the Network of Agricultural Water Quality Survey (NAWQS). Considering conditions of circumstances around reservoirs, self-purification systems such as natural ecosystem, oxidation ponds with plants, grassed waterways, weirs, and manmade plant-islands are taking into account enhancing to trap nutrients in waters running off from agricultural lands. The Pollutant Run off Ratios were analysed to predict the effects of water quality improvement for self-purification systems. The cost of water quality improvement was evaluated. The correlation equation between cost and irrigation area showing high correlation coefficient was derived.

  • PDF

Evaluation of the Self-purification Capacity in the Southern Waters of the East Sea in Summer (하계 동해남부해역의 자정능력 평가)

  • LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.1
    • /
    • pp.69-78
    • /
    • 1987
  • Human wastes are rich in organic matter and therefore affect the dissolved oxygen when they are discharged into the sea. The breakdown of this organic matter liberates nutrients. The purpose of this study is to evaluate the self-purification capacity in the southern waters of the East Sea during the three cruises in June, July and August, 1986. Streeter and Phelps' model has been used in this study. Factors in this model, deoxygenation constant and reaeration coefficient, have been determined by applying oxygen consumption method and a closed system model. Deoxygenation constant and reaeretion coefficient are 0.177-0.313/day and 0.025-0.364/day respectively. The self-purification capacity to the DO value of 5mg/l is found to be $42.29\~434.25g\;BOD/m^2$, and to a great extent depends on the vertical mixing.

  • PDF

A Studies on Removal of Nutrient Material by Using Dropwort Field (미나리꽝을 이용한 영양물질제거에 관한 연구)

  • 이영신;김창회
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.3
    • /
    • pp.16-20
    • /
    • 2003
  • Nitrogen(N) and phosphorus(P) in surface streams mainly lead to euthrophication. It aggravates water quality and consequently increases the purification costs. As a resolution of water contamination caused by household drainage through irrigation route by 70% of the 1,300 community residents in Eum-Am Myun, Seo-San city, was implemented biological self-purification method by growing Oenanthe Javanica along the polluted water tunnel. The contaminated water was efficiently purified after passing the dropwort field; DO conc. of effluent water was increased 8.3∼61.9% after through the drop wort field. HRT of experiment system was changed 0.05∼1.50/day. 50% of BOD was eliminated at the range above 12 mg/l of Influent BOD conc. Also, 50% of COD was eliminated at the range above 30 mg/l of Influent COD conc. Finnally, the influent T-N loading at range below 1.5 g/m$^3$/d reduced 50% of Influent T-N conc., and so did influent T-P loading at the range below 0.03 g/m$^3$/dwas reduced 50% of Influent T-P conc.

Assessment of Self-purification Capacity along the Midstream of Nakdong River (낙동강(洛東江) 중류수계(中流水系)의 자정능력(自淨能力) 평가(評價))

  • Choi, Eon-Ho;Lee, Su-Rae
    • Korean Journal of Environmental Agriculture
    • /
    • v.1 no.1
    • /
    • pp.39-47
    • /
    • 1982
  • Dissolved oxygen, BOD and flow pattern of the Nakdong River stream were measured for 3 years from 1978 to 1980 at quarterly intervals of January, April, June and October at 12 sites along the main stream from Sangju to Imhaejin and at 2 sites of Geumho and Nam River tributaries. With these data, the self-purification factors of the river were computed to obtain the following results: 1) The average BOD loads per day at the tributary of Geumho River were 94 tons in January, 39 tons in April, 60 tons in July and 54 tons in October, and these are considered to be the main source of water pollution toward the main stream of the Nakdong River. 2) Self-purification factors for the Hwawon-Hyunpung region of the main stream after receiving Geumho River water were computed to give $0.21{\sim}0.59$ of deoxygenation $constant(K_1)$ and $0.56{\sim}2.27$ of reaeration $constant(K_2)$. The oxygen-sag curves constructed for the main stream showed a remarkable decline at Hwawon and a quick recovery at Hyunpung, indicating a rapid decomposition of pollution loads received from the Geumho River. It was confirmed that the self-purification capacity of the Nakdong River was relatively high.

  • PDF

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.233-239
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water. The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg O$_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg O$_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

  • PDF

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.155-159
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water, The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg$O_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg $O_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

Determination of EMC and Washoff Characteristics of Stormwater Runoff from Broad-Leaved Forest Areas (산림 활엽수 지역의 강우유출수 유출특성 및 EMC 산정)

  • Kang, Chang Guk;Lee, Soyoung;Gorme, Joan Barniso;Lee, Jea Un;Kim, Lee-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.393-399
    • /
    • 2009
  • The water of rivers and lakes are affecting by point and nonpoint source pollutions. The point source pollution can be controlled by establishing the treatment plants. However, nonpoint source pollution by various human activities is not easy to be controlled because it is difficult to determine the exits of the water flow and have many exit points. Due to contribution of nonpoint source pollution, the achievement ratio of water quality in rivers and lakes is not high. TMDL is the outstanding water quality control policy because all of the pollutant loadings from the watershed area are counting on the input loads. Our aqua-ecosystem has self-purification process by biological, physical and ecological processes. The self-purification process can remove the pollutant load from background concentrations. Usually forest area is main source of background concentrations. In Korea, about 70% of the national boundary area consists of mountains. This study is conducting as part of long-term monitoring to determine the Event Mean Concentration during a storm. The monitoring was performed on a broad-leaved tree area.

Environmental Characteristics and Nature-friendly Planning Strategies for an Urban Stream - The Case of Chuncheon's Gongji Stream - (도시하천의 환경특성과 친자연적 계획전략 - 춘천시 공지천을 대상으로 -)

  • Jo Hyun-Kil;Ahn Tae-Won
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.1-11
    • /
    • 2006
  • This study analyzed characteristics of natural and human environments in Chuncheon's Gongji stream, and suggested nature-friendly planning strategies for self-purification of water quality, biodiversity improvement and conservative waterfront recreation. The environmental analysis included streambed structures, floodplain soils, water quality, vegetation, wildlife, and human facilities. Natural colonization of vegetation for the middle section of the study stream was obstructed by a straightened concrete revetment of baseflow channel, and vehicle movement and concrete parking lots across the floodplain. These human disturbances also deteriorated the naturalness of the stream landscape and limited habitation of bird species. However, natural sedimented wetlands in half of the channel width for the lower section of the stream contributed to a desirable vegetational landscape and greater bird occurrence. Based on BOD measurements, water quality of the stream fell under class $II{\sim}III$ of the stream water-quality standard, but it was worse around sewage outlets due to incomplete sewage collection especially during the dry season. Dominant fish species included typical inhabitants of good water-quality streams that are tolerant of adverse habitat changes. Nature-friendly planning strategies were established based on analysis of the environmental characteristics. They focused on not merely spatial zoning and layout divided into four zones - preservation, partial preservation, conservation and use -, but close-to-nature channel revetment techniques, natural water-purification facilities, biotope diversification, and water-friendly recreation and circulation. Strategies pursued both renewal of stream naturalness and hydraulic stability of streamflow by minimizing transformation of natural channel micro-topography and biotope, and by reflecting natural traces of streambed structures such as revetment scour and sedimentation.

Self-cleaning measurements on tiles manufactured with micro-sized photoactive TiO2

  • Bianchi, C.L.;Gatto, S.;Nucci, S.;Cerrato, G.;Capucci, V.
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.65-75
    • /
    • 2013
  • Heterogeneous photocatalysis is a rapidly developing field in environmental engineering. It has a great potential to cope with the increasing pollution in the air. The addition of a photocatalyst to ordinary building materials such as tiles, concrete, paints, creates environmental friendly materials by which air pollution or pollution of the surface itself can be controlled and diminished. This work reports the results of the laboratory research, especially carried out towards air purifying action and self-cleaning measurements. In particular the research was focused on the study of the photocatalytic behavior of industrially prepared tiles produced starting from commercial micro-sized $TiO_2$. Air purification action has been investigated through NOx degradation tests. On the contrary, the degradation of pollution at the surface, also called as self-cleaning action, is verified by the degradation of two different organic dyes: Rhodamine B (red color) and Metanil yellow (yellow).