• Title/Summary/Keyword: Self-propelled Artillery

Search Result 21, Processing Time 0.028 seconds

A Study on the Determination for the Economic Life-Time of a Self-Propelled Artillery (자주포 경제수명 결정에 관한 연구)

  • 최은성;최석철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.26-37
    • /
    • 2000
  • This research paper deals with the problem of determining the optimal life time in terms of economical sense for a self-propelled artillery. Equivalent Annual Cost Method(EACM) is used to evaluate the optimal life time, based on the acquisition cost, and the operation and maintenance cost. It is assumed that the operation and maintenance cost includes the costs for spare parts, petroleum and ammunition for training. From the result of this study, the optimal life time for a self-propelled artillery is between 13.9 years and 16.1 years with 95% confidence interval.

  • PDF

A Feasibility Study of Autonomous Driving and Unmanned Technology of Self-Propelled Artillery, K-9 (K-9자주포의 자율주행 및 자주포 무인화 기술의 타당성 검토)

  • Koo, Keon-Woo;Yun, Dong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.889-898
    • /
    • 2021
  • Currently, due to the demographic cliff phenomenon in Republic of Korea, A serious defense vacuum could occur due to the lack of South Korean military's personal strength. As a result, The South Korean military has a possibility to implement the polices the prepare for military provocations and preemptive strikes by the North Korean military while resolving the South Korean defense vacuum caused by the shrinking population. It seems like that the only way for the South Korean military to solve the shortage of personal strength due to the population decline is to reduce the number of Mechanized Units(MU) other than, infantry and automate, and autonomous driving the weapons system of the Mechanized Units(MU). In this paper, we propose the use of the virtual autonomous driving of the self propelled artillery K-9's in self selection of the position and occupation of position and self positioning in the position. At the same time in this paper, the self propelled artillery K-9 model robot is used to simulate and the explain about the operation method, necessity and feasibility in the self propelled artillery K-9. In addition, this paper predicted the problems that would arise if the South Korean military deployed autonomous driving self propelled K-9, in real combat.

The Optimal Design Technique for Improving Durability of Spline Shaft of the Self Propelled Artillery' Generator (자주포 발전기 스플라인 축 내구성 향상을 위한 최적 설계 기법)

  • Kim, Byeong Ho;Kang, Hyen Jae;Park, Young Il;Seo, Jae Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.485-491
    • /
    • 2015
  • In this study, the experimental and analytical investigation on structural integrity evaluation of spline shaft of self propelled artillery' generator were carried out. For this work, macro and microstructure fractography of spline shaft were observed. According to the results of the structure analysis and simulation, the shaft was redesigned and optimized. To improve the stiffness and shear stress, the material was changed from the SNCM220 to SNCM439 and surface roughness and protective coating treatment are changed to increase the stress relaxation, respectively. From the result of the torsion test of shaft and accelerated life test of generator, the shaft of a SNCM439 with heat-treatment(Q/T) and electroless nickel plating was superior quality reliability and durability than the others. Therefore, modeling and simulation corresponded well with the experimental result and structural safety was confirmed by generator performing.

A Study on the Increase of the Reliability of the Flick Rammer on K-55A1 Self Propelled Artillery (K-55A1 자주포 급속장전장치의 장전신뢰성 향상에 관한 연구)

  • Na, Ra-Byeol;Kim, Byung-Hyun;Lee, Ju-Seung;Kim, Byeong-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.62-68
    • /
    • 2018
  • This study was conducted to improve the shooting stability of self propelled artillery by improving the flick rammer system. The flick rammer system is designed to reduce crew fatigue and shorten the movement and loading time of the shell compared with the conventional manual loading system. Basically, in the flick rammer system of the shooting type, fall-back occurs intermittently, which causes problems in the rapid loading. To solve this problem, a detailed C.A.E. (Computer Aided Engineering) analysis of the internal structure of the existing rapid loading field was conducted. Through this, we sought a solution that can prevent fall-back by reducing the flying distance. We then optimized the loading station to reduce the flying distance and confirmed the possibility of suppressing the fall-back compared to the existing product through actual tests in the field.

Operational Effectiveness Analysis of Field Artillery Ammunition Support Vehicle for K-55 Self-Propelled Artillery Using Simulation (시뮬레이션을 이용한 K-55자주포용 탄약운반장갑차 운용효과 분석)

  • Jung, Chi-Young;Lee, Jae-Moon;Lee, Jae-Yeong;Park, Young-Kyu
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.3
    • /
    • pp.11-18
    • /
    • 2011
  • Korea army is operating K-10 FAASV (Field Artillery Ammunition Support Vehicle) for K-9 SP (Self-Propelled artillery) and examining employment of FAASV for K-55 SP. At present, the FAASV for K-55 SP has been developed as a prototype. To decide the employment of this FAASV for K-55 SP, previous research for operational effectiveness of this equipment is needed. Therefore in this paper, we presented the result of the operational effectiveness of the FAASV for K-55 SP using a wargame model, FEAM (Fire Execution Analytic Model) which is used to analyze formation, weapon system and operation in army artillery field. Based on the result of the FEAM simulation, we introduced the operational effectiveness of FAASV for K-55 SP, which is able to be applied to decide whether employ FAASV for K-55 SP or not.

A Study on Durability Life Improvement of Blower for Military Armored Vehicle and Self-propelled Artillery (군용장갑차 및 자주포용 송풍기의 내구수명 향상에 대한 연구)

  • Park, Young Min;Kim, Byung Uk;Kim, Sung Hoon;Noh, Sang Wan
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.453-465
    • /
    • 2019
  • Purpose: A main purpose is to increase the operational rate and reduce operating maintenance costs by Improving the durability of Blower of Military Armored Vehicle and Self-propelled Artillery. As a result, it is expected to improve the service quality of customers. Methods: After analyzing the cause of the stop of the blower, the improvement plans were established and the effectiveness of each improvement plans were verified by testing. Results: Mechanical, electrical and environmental factors affecting brush wear were reviewed, but it was difficult to specify the cause, which necessitated a review of the application of the BLDC motor. Conclusion: After applying the BLDC motor to the blower, tests proved that the existing blower can be replaced. It is expected that this study will help improve the durability life of similar equipment that is applied with Brushed DC motors as well as blowers.

The Study on the Combat Placement Availability of the Reinforce Concrete Box-type Artillery Positions (철근콘크리트조 박스형 포상의 전력화 가능성에 관한 연구)

  • Baek, Jonghyuk;Kim, Sukbong;Park, Young Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.88-89
    • /
    • 2013
  • For the purpose of launching strikes, initial survivability of self-propelled artilleries is of crucial importance despite the fact that they are mobility weapon systems. This study identifies the combat placement possibility of the reinforced concrete box-type artillery positions, which might enable the replacement of the current igloo-types, in terms of cost and protection capability. In the numerical analysis the obtained numerical values have proved that these facilities have sufficient protection capability. In addition, it could be concluded that these facilities are also cost-competitive, if more than five positions are constructed simultaneously.

  • PDF

The Study on Assessment of Protective Capacity of the Reinforced Concrete Box-type Artillery Positions (철근콘크리트조 박스형 포상의 방호성능 평가)

  • Baek, Jonghyuk;Kim, Suk Bong;Son, Kiyoung;Park, Young Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.275-281
    • /
    • 2014
  • Although self-propelled artilleries are mobile equipment, they need their own covered-positions for survival against preemptive strikes. The most important military requirement is enough protective capacity against blast pressure caused by explosion. This paper aims to assess the protective capacity of the newly-placed concrete box-type artillery positions using accurate structural geometric models as well as soil-structure interaction analysis. The commercial program is used to model the structural geometry of the positions. In order to describe the correct wave propagation in the backfill along with soil-structure interaction, used parameters in shock equation of state are selected based on the related studies as well as theories and then their final results are verified with the ones calculated with empirical equations in the US Unified Facility Criteria. In sum, it could be concluded that the protective capacity of the newly-built positions satisfies the protective structural requirement.

A Study on the Nondestructive Test Optimum Design for a Ground Tracked Combat Vehicle (지상궤도전투장비의 비파괴검사 최적설계방안에 대한 연구)

  • Kim, Byeong Ho;Seo, Jae Hyun;Gil, Hyeon Jun;Kim, Seon Hyeong;Seo, Sang Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.358-366
    • /
    • 2015
  • In this study, a nondestructive test (NDT) is performed to inspect the optimal design of a ground tracked combat vehicle for self-propelled artillery, tank, and armored vehicles. The minimum qualification required for personnel performing the NDT of a ground tracked combat vehicle was initially established in US military standards, and then applied to the Korean defense specifications to develop a ground tracked combat vehicle. However, the qualification standards of an NDT inspector have been integrated into NAS410 through the military and commercial specifications unification project that were applied in the existing aerospace/defense industry public standard. The design method for this study was verified by applying the optimal design to the liquid penetrant testing Al forging used in self-propelled artillery. This confirmed the reliability and soundness of the product.

Design Technique for Track Shoe Body of Military Vehicles (군용 궤도류 궤도몸체 설계 방법론 연구)

  • Shin, Cheolho;Oh, Yeong Min;Park, Ji Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.77-82
    • /
    • 2018
  • Track shoes improve the off-road driving ability of tanks. The strength of the track shoe body directly affects the driving ability of tanks, self-propelled artillery, and armored vehicles. In this study, the design technique for track shoe body was investigated. To select the optimal design of track shoe body, three track shoe body models were suggested and compared. Tensile strength was calculated using computer-aided engineering (CAE) analysis. Compressive tests were conducted using the original tank sprocket because sprocket compression is critical to the lifespan of the track shoe body. As a result, one track shoe body design was selected and the process of track shoe body design was described.