• 제목/요약/키워드: Self-propagating High-temperature Synthesis (SHS) reaction

검색결과 69건 처리시간 0.021초

다층원소박판에서 $TiAl_3$의 고온자전합성에 미치는 승온속도의 영향 (Effect of Heating Rate on Self-Propagating, High-Temperature Synthesis of $TiAl_3$ Intermetallic from Multi-Layered Elemental Foils)

  • 김연욱;김병관;남태운;허보영;김영직
    • 한국재료학회지
    • /
    • 제8권11호
    • /
    • pp.987-992
    • /
    • 1998
  • Ti 과 AI의 고순도 원소 박판을 이용하여 열간프레스장치에서 고온자전합성법으로 TiAI계 금속간화합물을 제조하였다. 원소 박판에서 $TiAl_3$ 금속간화합물을 제조하는 데 승온속도, 압력, 온도 등의 변수가 고온자전합성에 영향을 미치는 중요한 인자다. 특히 승온속도는 반응합성온도를 결정하는 인자로서 본 실험에서 DTA 분석을 이용하여 공정변수를 결정하였다. DTA 분석결과에 따르면, Ti와 AI의 계면에서 반응합성은 AI의 용융점 이하와 이상의 온도에서 두 번 발생함을 알 수 있다. 또한 승온속도가 증가할수록 두 반응합성온도는 증가하였다. 10층의 Ti 박판과 9층의 AI 박판을 $20^{\circ}C$/min의 승온속도로 고온자전합성시킨 후, $810^{\circ}C$와 240MPa의 압력에서 4시간 동안 열처리한 결과 $700\mu\textrm{m}$ 두께의 TiAI계 금속간화합물 판재를 제조하였으며, XRD 회절과 SEM으로 확인하였다.

  • PDF

Capacitor용 Ta분말 제조공정 Waste Ta를 이용한 TaC분말 제조 (Preparation of TaC Powder from the Waste of Ta powder Fabrication Process for Capacitor)

  • 박제신;서창열;윤재식;배인성;박형호
    • 자원리싸이클링
    • /
    • 제12권4호
    • /
    • pp.51-57
    • /
    • 2003
  • 케퍼시터용 Ta 분말제조공정에서 발생하는 waste 분말을 이용하여 TaC 분말을 자전고온합성법에 의하여 합성하였다. waste TA는 합성반응의 활성 및 산화방지를 위하여 전처리공정에서 미분쇄 및 탈산처리가 필요하였다. 합성반응에서는 TaC 단일상은 6∼7wt.%C의 조성범위에서 얻을 수 있었다. 또한 반응온도는 시료의 압축력에 영향을 받으며, 압축력 1600psi에서 최고반응온도를 나타냈다.

자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘 (Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method)

  • 하호;황규민;한희동
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF

자전연소합성법에 의한 FeB 분말의 제조 (Preparation of FeB by SHS (Self Propagating High Temperature Synthesis))

  • 신창윤;원창환
    • 한국세라믹학회지
    • /
    • 제45권7호
    • /
    • pp.418-422
    • /
    • 2008
  • The preparation of FeB by SHS in $B_2O_3-Mg-Fe-Fe_3O_4$ system was investigated in this study. In the preparation of FeB, the effects of the initial pressure of inert gas in reactor, the content of Mg and $Fe_3O_4$ in mixture on the reactivity and reaction products was investigated. The minimum initial pressure of inert gas in reactor for SHS reaction in this system was 25 atm, and as the pressure increased, the concentration of unreacted Mg decreased and combustion temperature increased. At the initial inert gas pressure in reactor of 25 atm, the optimum composition for the preparation of pure FeB was $1.5B_2O_3$+3.43Mg+ 1.7Fe+$0.1Fe_3O_4$. The FeB synthesized in this condition had an irregular shape and the particle size of $5\;{\mu}m$.

자전고온반응에 의한 금속간화합물/금속 적층복합재료의 제조공정변수가 미세조직에 미치는 영향 (The Effect of Fabrication Process Parameters on the Microstructures of Intermetallic/Metal Laminated Composite by Self-propagating High-temperature Synthesis)

  • 김희연;정동석;홍순형
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.68-74
    • /
    • 2003
  • 본 논문에서는 Ni과 Al 금속박판 사이의 자전고온반응을 이용한 금속간화합물/금속 적층복합재료의 제조시 제조공정 조건이 최종 미세조직에 미치는 영향을 연구하였다. 열분석을 통하여 Ni과 Al사이의 반응은 먼저 NiA1$_3$가 핵생성­성장 기구에 의해 생성된 후 다시 Ni$_2$A1$_3$로 확산변태됨을 확인하였다. 자전고온반응을 열역학적으로 해석하여 금속박판의 두께비(Ni:Al) 및 반응전 열처리와 반응후 미세조직에서 잔류한 Al의 부피분율과의 관계를 정립하였다. 후열처리 공정에 의해 Ni/Nl$_3$Al/NiAl의 적층구조와 각 두께비에서 82%(1:1), 59.5%(2:1), 40%(4:1)의 부피분율을 가지는 금속간화합물/금속적층복합재료를 얻을 수 있었다.

자전연소반응법에 의해 제조된 PZT의 전기적 특성에 미치는 Sr의 영향 (Effects of Sr on the Electrical Properties of PZT Ceramics Prepared by Self-propagating High-temperature Synthesis)

  • 양범석;신창윤;원창환
    • 한국세라믹학회지
    • /
    • 제45권11호
    • /
    • pp.713-718
    • /
    • 2008
  • PSZT are selected and SHS are applied to each system. The sintering properties of PSZT powders showed $7.754g/cm^3$ of sintered density and $4{\mu}m$ of grain size at sintering temperature of $1250^{\circ}C$. Curie temperature lowered gradually from $363.6^{\circ}C\;to\;319.2^{\circ}C$ and relative dielectric constants increased rapidly by a quantity of Sr. This remarkable contrast in dielectric properties with powder preparation methods, in this study, was not due to grain size and sintered density but rather a crystallinity and sinterability of synthesized powders, extra-supplied Pb during reaction, mol fraction of rhombohedral phase and purity of starting materials.

SHS 법에 의한 $Ti5_Si_3$의 합성시 온도 Profile 분석 (Temperature Profile Analysis of $Ti5_Si_3$ in Self-Propagating High Temperature Synthesis)

  • 김도경;이형직;김익진;이형복
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.341-348
    • /
    • 1995
  • An analysis of the use of temperature profiles in the determination of the kinetic parameters of combustion synthesis of Ti5Si3 were investigated. From profile analysis, an apparent activation energy of 12KJ/mol was calculated. The Maximum heating rate achieved during 10wt% Ti5Si3 reaction by the product dilution method was approximately $1.5\times$104 K/s. Coupling this value with the measured wave velocity of 7.02 cm/s yields a maximum thermal gradient of 2.14$\times$103 K/cm. The value of tr (=t*) was calculated to be 1.2$\times$10-1 s and the value of td (=tx) was calculated to be 32.89 s. Using the definition of t* and the measured wave velocity, the effective thermal diffusivity, $\alpha$, was calculated to be 0.59$\times$10 $\textrm{cm}^2$/s. From these analysis, the power function, G, was also calculated.

  • PDF

SHS법에 의한 ZrC 합성 및 온도 Profile 분석 (Synthesis and Temperature Profile Analysis of ZrC by SHS Method)

  • 이형복;조건;이재원
    • 한국세라믹학회지
    • /
    • 제32권6호
    • /
    • pp.659-668
    • /
    • 1995
  • Zirconium carbide was prepared from the mixture of metal zirconium and carbon powders in argon atmosphere by Self-propagating High-temperature Synthesis (SHS) in order to obtain the best carbon source and dilution contents. The most exellent result was obtained in the case that active carbon was added as a starting material, 20~30 wt% dilution content. From thermal profile analysis an apparent activation energy of 118 KJ/mol was calculated. The maximum heating rate achieved during 15 wt% ZrC reaction by product dilution method was approximately 1.54$\times$105 K/s. Coupling this value with the measured wave velocity of 1.026cm/s yielded a maximum thermal gradient fo $1.5\times$105 K/cm. Using the definition of t* and the measured wave velocity, the effective thermal diffusivity, $\alpha$, was calculated to be 0.62$\times$102 $\textrm{cm}^2$/s.

  • PDF

니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성 (Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications)

  • 김동원;권구현;김경태
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.

알칼리 침출법을 통한 초경 공구의 재활용 및 자전연소합성법을 통해 제조된 나노급 탄화텅스텐 제조공정 연구 (Recycling of Hardmetal Tool through Alkali Leaching Process and Fabrication Process of Nano-sized Tungsten Carbide Powder using Self-propagation High-temperature Synthesis)

  • 강희남;정동일;김영일;김인영;박상철;남철우;서석준;이진영;이빈
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.47-55
    • /
    • 2022
  • Tungsten carbide is widely used in carbide tools. However, its production process generates a significant number of end-of-life products and by-products. Therefore, it is necessary to develop efficient recycling methods and investigate the remanufacturing of tungsten carbide using recycled materials. Herein, we have recovered 99.9% of the tungsten in cemented carbide hard scrap as tungsten oxide via an alkali leaching process. Subsequently, using the recovered tungsten oxide as a starting material, tungsten carbide has been produced by employing a self-propagating high-temperature synthesis (SHS) method. SHS is advantageous as it reduces the reaction time and is energy-efficient. Tungsten carbide with a carbon content of 6.18 wt % and a particle size of 116 nm has been successfully synthesized by optimizing the SHS process parameters, pulverization, and mixing. In this study, a series of processes for the high-efficiency recycling and quality improvement of tungsten-based materials have been developed.