• Title/Summary/Keyword: Self-organizing neural network

Search Result 222, Processing Time 0.022 seconds

Evolutionary Learning Algorithm fo r Projection Neural NEtworks (투영신경회로망의 훈련을 위한 진화학습기법)

  • 황민웅;최진영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.74-81
    • /
    • 1997
  • This paper proposes an evolutionary learning algorithm to discipline the projection neural nctworks (PNNs) with special type of hidden nodes which can activate radial basis functions as well as sigmoid functions. The proposed algorithm not only trains the parameters and the connection weights hut also c~ptimizes the network structure. Through the structure optimization, the number of hidden node:; necessary to represent a given target function is determined and the role of each hidden node is decided whether it activates a radial basis function or a sigmoid function. To apply the algorithm, PNN is realized by a self-organizing genotype representation with a linked list data structure. Simulations show that the algorithm can build the PNN with less hidden nodes than thc existing learning algorithm using error hack propagation(EE3P) and network growing strategy.

  • PDF

A Self-Organizing Map Neural Network Approach to Segmenting Knowledge Management Type of Venture Businesses in KOSDAG (자기조직화 지도(SOM) 인공신경망 모형을 이용한 벤쳐기업의 지식경영 유형 세분화에 관한 연구-코스닥 상장기업을 대상으로-)

  • 이건창;권순재;이광용
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.2
    • /
    • pp.95-115
    • /
    • 2001
  • We propose classifying the venture firms into four types of knowledge management. For this purpose, we collected questionnaire data from 101 venture firms listed in KOSDAQ, and applied a unsupervised neural network algorithm SOM to obtain four clusters representing knowledge management types-High Tech Type, Organizational Knowledge Type, Information Technology Type, and Beginner Type. Based on the results, we conclude that the venture firms listed in KOSDAQ should first know its own knowledge management type, and then apply appropriate strategies to take advantage of the knowledge management impacts on the competitiveness.

  • PDF

Performance Improvements of WiBro System Using the 64QAM SOFM Prefiltering (64QAM SOFM 전처리기를 이용한 와이브로 시스템의 성능 개선)

  • Park, Jin-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1125-1132
    • /
    • 2010
  • WiBro(Wireless Broadband Internet) is the standard of high-speed portable internet based on OFDMA/TDD (Orthogonal frequency division multiple access / Time division duplexing) techniques, and the subset of consolidated version of IEEE802.16e Wireless MAN standard. In this paper, we propose performance improvements of WiBro system using the 64QAM SOFM(Self-Organizing Feature Maps)prefiltering. Proposed method used the prefiltering SOFM neural network blind equalization in the Broadband 64 QAM WiBro system receiver. The prefiltering SOFM neural network constellates 64QAM that is transmitter data shape and the blind equalization removes ICI(Inter Carrier Interference). To verificate the proposed method usability, the MSE and the BER are simulated. The simulation results shown that is improved the performances of the proposed WiBro system using the 64QAM SOFM Prefiltering than the existing WiBro system.

Classification of Normal/Abnormal Conditions for Small Reciprocating Compressors using Wavelet Transform and Artificial Neural Network (웨이브렛변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, Dong-Soo;An, Jin-Long;Yang, Bo-Suk;An, Byung-Ha
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.796-801
    • /
    • 2000
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a signal classification method for diagnosing the rotating machinery using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them are compared with each other. This paper is focused on the development of an advanced signal classifier to automatise the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

Queue Detection using Fuzzy-Based Neural Network Model (퍼지기반 신경망모형을 이용한 대기행렬 검지)

  • KIM, Daehyon
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2003
  • Real-time information on vehicle queue at intersections is essential for optimal traffic signal control, which is substantial part of Intelligent Transport Systems (ITS). Computer vision is also potentially an important element in the foundation of integrated traffic surveillance and control systems. The objective of this research is to propose a method for detecting an exact queue lengths at signalized intersections using image processing techniques and a neural network model Fuzzy ARTMAP, which is a supervised and self-organizing system and claimed to be more powerful than many expert systems, genetic algorithms. and other neural network models like Backpropagation, is used for recognizing different patterns that come from complicated real scenes of a car park. The experiments have been done with the traffic scene images at intersections and the results show that the method proposed in the paper could be efficient for the noise, shadow, partial occlusion and perspective problems which are inevitable in the real world images.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network - (인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 -)

  • Lee Kum-Il;Yim Yong-Sik;Sohn Ok-Jae;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A two-dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E. coli for the production of 5-aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyed using artificial neural networks, i.e. self-organizing map (SOM) and feedforward backpropagation neural network (BPNN).Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process performance, e.g. forecasting the process performance.

Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts (그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화)

  • Park, An-Jin;Jung, Kee-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.572-587
    • /
    • 2008
  • The Self-organizing Feature Map(SOFM) that is one of unsupervised neural networks is a very powerful tool for data clustering and visualization in high-dimensional data sets. Although the SOFM has been applied in many engineering problems, it needs to cluster similar weights into one class on the trained SOFM as a post-processing, which is manually performed in many cases. The traditional clustering algorithms, such as t-means, on the trained SOFM however do not yield satisfactory results, especially when clusters have arbitrary shapes. This paper proposes automatic clustering on trained SOFM, which can deal with arbitrary cluster shapes and be globally optimized by graph cuts. When using the graph cuts, the graph must have two additional vertices, called terminals, and weights between the terminals and vertices of the graph are generally set based on data manually obtained by users. The Proposed method automatically sets the weights based on mode-seeking on a distance matrix. Experimental results demonstrated the effectiveness of the proposed method in texture segmentation. In the experimental results, the proposed method improved precision rates compared with previous traditional clustering algorithm, as the method can deal with arbitrary cluster shapes based on the graph-theoretic clustering.

A Study on Optimization of Partial Discharge Pattern Recognition using Genetic Algorithm (Genetic Algorithm을 이용한 부분방전 패턴인식 최적화 연구)

  • Kim, Seong-Il;Jung, Seung-Yong;Koo, Ja-Yoon;Jang, Yong-Mu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.145-146
    • /
    • 2006
  • 본 논문은 부분방전(PD: Partial Discharge)의 패턴인식 확률 극대화를 목적으로 신경망(NN: Neural Network) 파라미터 중에서 은닉층 뉴런의 수, 모멘텀(momentum)의 Step size와 Decay rate 를 최적화하기 위하여 유전 알고리즘(GA: Genetic Algonthm)을 적응하였다. 실험적 연구의 대상으로서, GIS(Gas Insulated Switchgear)사고의 주요 원인으로 보고되어있는 결함들을 인위적으로 모의한 16개 Test cell을 이용하여 부분방전을 발생시켰다. 부분방전 신호는 본 연구팀이 개발한 센서를 이용하여 검출되어 데이터베이스가 구축되어 그로부터 추출된 학습 데이터들의 학습에 다음과 같은 5가지 신경망 모델이 적응되었다: Multilayer Perception (MLP), Jordan-Elman Network (JEN), Recurrent Network (RN), Self-Organizing Feature Map (SOFM), Time-Lag Recurrent Network (TLRN). 유전 알고리즘 적용 효율성을 분석하기 위하여 동일한 데이터를 이용하여 다음과 같은 두 가지 방법을 적용한 결과를 상호 비교하였다. 우선 상기 선택된 모델만 적용하였고 다근 하나는 상기 모델과 Genetic Algorithm이 동시에 적용되었다. 모든 모델에 대하여 학습오차와 패턴 분류 확률을 비교한 결과, 유전 알고리즘 적응 시 부분방전 패턴인식 확률이 향상되었음이 확인되어 향후 신뢰성 있는 GIS 부분방전 진단기술에 활용될 수 있을 것으로 사료된다.

  • PDF

Temporal Dynamics and Patterning of Meiofauna Community by Self-Organizing Artificial Neural Networks

  • Lee, Won-Cheol;Kang, Sung-Ho;Montagna Paul A.;Kwak Inn-Sil
    • Ocean and Polar Research
    • /
    • v.25 no.3
    • /
    • pp.237-247
    • /
    • 2003
  • The temporal dynamics of the meiofauna community in Marian Cove, King George Island were observed from January 22 to October 29 1996. Generally, 14 taxa of metazoan meiofauna were found. Nematodes were dominant comprising 90.12% of the community, harpacticoid 6.55%, and Kinorhynchs 1.54%. Meiofauna abundance increased monthly from January to May 1996, while varying in abundance after August 1996. Overall mean abundance of metazoan meiofauna was $2634ind./10cm^2$ during the study periods, which is about as high as that found in temperate regions. Nematodes were most abundant representing $2399ind./10cm^2$. Mean abundance of harpacticoids, including copepodite and nauplius was $131ind./10cm^2$ by kinorhynchs $(26ind./10cm^2)$. The overall abundance of other identified organisms was $31ind./10cm^2$ Other organisms consisted of a total of 11 taxa including Ostracoda $(6ind./10cm^2)$, Polycheata $(7ind./10cm^2)$, Oligochaeta $(8ind./10cm^2)$, and Bivalvia $(6ind./10cm^2)$. Additionally, protozoan Foraminifera occurred at the study area with a mean abundance of $263ind./10cm^2$. Foraminiferans were second in dominance to nematodes. The dominant taxa such as nematodes, harpacticoids, kinorhynchs and the other tua were trained and extensively scattered in the map through the Kohonen network. The temporal pattern of the community composition was most affected by the abundance dynamics of kinorhynchs and harpacticoids. The neural network model also allowed for simulation of data that was missing during two months of inclement weather. The lowest meiofauna abundance was found in August 1996 during winter. The seasonal changes were likely caused by temperature and salinity changes as a result of meltwater runoff, and the physical impact by passing icebergs.

The Hybrid Multi-layer Inference Architectures and Algorithms of FPNN Based on FNN and PNN (FNN 및 PNN에 기초한 FPNN의 합성 다층 추론 구조와 알고리즘)

  • Park, Byeong-Jun;O, Seong-Gwon;Kim, Hyeon-Gi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.7
    • /
    • pp.378-388
    • /
    • 2000
  • In this paper, we propose Fuzzy Polynomial Neural Networks(FPNN) based on Polynomial Neural Networks(PNN) and Fuzzy Neural Networks(FNN) for model identification of complex and nonlinear systems. The proposed FPNN is generated from the mutually combined structure of both FNN and PNN. The one and the other are considered as the premise part and consequence part of FPNN structure respectively. As the consequence part of FPNN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. FPNN is available effectively for multi-input variables and high-order polynomial according to the combination of FNN with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. As the premise part of FPNN, FNN uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. And we use two kinds of FNN structure according to the division method of fuzzy space of input variables. One is basic FNN structure and uses fuzzy input space divided by each separated input variable, the other is modified FNN structure and uses fuzzy input space divided by mutually combined input variables. In order to evaluate the performance of proposed models, we use the nonlinear function and traffic route choice process. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously. And also performance index related to the approximation and prediction capabilities of model is evaluated and discussed.

  • PDF