• Title/Summary/Keyword: Self-organizing network

Search Result 323, Processing Time 0.033 seconds

A Study on the Two-Phased Hybrid Neural Network Approach to an Effective Decision-Making (효과적인 의사결정을 위한 2단계 하이브리드 인공신경망 접근방법에 관한 연구)

  • Lee, Geon-Chang
    • Asia pacific journal of information systems
    • /
    • v.5 no.1
    • /
    • pp.36-51
    • /
    • 1995
  • 본 논문에서는 비구조적인 의사결정문제를 효과적으로 해결하기 위하여 감독학습 인공신경망 모형과 비감독학습 인공신경망 모형을 결합한 하이브리드 인공신경망 모형인 HYNEN(HYbrid NEural Network) 모형을 제안한다. HYNEN모형은 주어진 자료를 클러스터화 하는 CNN(Clustering Neural Network)과 최종적인 출력을 제공하는 ONN(Output Neural Network)의 2단계로 구성되어 있다. 먼저 CNN에서는 주어진 자료로부터 적정한 퍼지규칙을 찾기 위하여 클러스터를 구성한다. 그리고 이러한 클러스터를 지식베이스로하여 ONN에서 최종적인 의사결정을 한다. CNN에서는 SOFM(Self Organizing Feature Map)과 LVQ(Learning Vector Quantization)를 클러스터를 만든 후 역전파학습 인공신경망 모형으로 이를 학습한다. ONN에서는 역전파학습 인공신경망 모형을 이용하여 각 클러스터의 내용을 학습한다. 제안된 HYNEN 모형을 우리나라 기업의 도산자료에 적용하여 그 결과를 다변량 판별분석법(MDA:Multivariate Discriminant Analysis)과 ACLS(Analog Concept Learning System) 퍼지 ARTMAP 그리고 기존의 역전파학습 인공신경망에 의한 실험결과와 비교하였다.

  • PDF

A Dynamically Reconfiguring Backpropagation Neural Network and Its Application to the Inverse Kinematic Solution of Robot Manipulators (동적 변화구조의 역전달 신경회로와 로보트의 역 기구학 해구현에의 응용)

  • 오세영;송재명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.985-996
    • /
    • 1990
  • An inverse kinematic solution of a robot manipulator using multilayer perceptrons is proposed. Neural networks allow the solution of some complex nonlinear equations such as the inverse kinematics of a robot manipulator without the need for its model. However, the back-propagation (BP) learning rule for multilayer perceptrons has the major limitation of being too slow in learning to be practical. In this paper, a new algorithm named Dynamically Reconfiguring BP is proposed to improve its learning speed. It uses a modified version of Kohonen's Self-Organizing Feature Map (SOFM) to partition the input space and for each input point, select a subset of the hidden processing elements or neurons. A subset of the original network results from these selected neuron which learns the desired mapping for this small input region. It is this selective property that accelerates convergence as well as enhances resolution. This network was used to learn the parity function and further, to solve the inverse kinematic problem of a robot manipulator. The results demonstrate faster learning than the BP network.

A Vertical File Partitioning Method Using SOFM in Database Design (데이터베이스 설계에서 SOFM 을 이용한 화일 수직분할 방법)

  • Shin, K.H.;Kim, J.Y.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.661-671
    • /
    • 1998
  • It is important to minimize the number of disk accesses which is necessary to transfer data in disk into main memory when processing transactions in physical database design. A vertical file partitioning method is used to reduce the number of disk accesses by partitioning relations vertically and accessing only necessay fragments. In this paper, SOFM(Self-Organizing Feature Maps) network is used to solve vertical partitioning problems. This paper shows that SOFM network is efficient in solving vertical partitioning problem by comparing approximate solution of SOFM network with optimal solution of N-ary branch and bound method. And this paper presents a heuristic algorithm for allocating duplicate attributes to vertically partitioned fragments. As branch and bound method requires particularly much computing time to solve large-sized problems, it is shown that SOFM network is able to overcome this limitation of branch and bound method and solve large-sized problems efficiently in a short time.

  • PDF

Neural Network Self-Organizing Maps Model for Partitioning PV Solar Power

  • Munshi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.1-4
    • /
    • 2022
  • The growth in global population and industrialization has led to an increasing demand for electricity. Accordingly, the electricity providers need to increase the electricity generation. Due to the economical and environmental concerns associated with the generation of electricity from fossil fuels. Alternative power recourses that can potentially mitigate the economical and environmental are of interest. Renewable energy resources are promising recourses that can participate in producing power. Among renewable power resources, solar energy is an abundant resource and is currently a field of research interest. Photovoltaic solar power is a promising renewable energy resource. The power output of PV systems is mainly affected by the solar irradiation and ambient temperature. this paper investigates the utilization of machine learning unsupervised neural network techniques that potentially improves the reliability of PV solar power systems during integration into the electrical grid.

Digital Watermarking Technique using self-similarity (자기유사성을 이용한 디지털 워터마킹 기법)

  • Lee, Mun-Hee;Lee, Young-hee
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.4
    • /
    • pp.37-47
    • /
    • 2003
  • In this paper. we propose a new digital watermarking technique which uses the self-similarity of OCT(Discrete Cosine Transform) coefficients for the ownership protection of an image, similar coefficients are classified by SOM(Self-Organizing Map) out of Neural Network. The watermark is inserted into the selected cluster among clusters which consist of coefficients. Generally, the inserted watermark in high frequency regions of an image is eliminated by the compression process such as JPEG compressions, and the inserted watermark in low frequency regions of an image causes the distortion of an image quality. Therefore, the watermark is inserted into the cluster that has many coefficients in the middle frequency regions. This algorithm reduces the distortion of an image quality because of inserting the watermark into an image according to the number of coefficients in selected cluster. To extract watermarks from the watermarked image, the selected cluster is used without an original image. In the experiment, the new proposed algorithm have a good quality and endure attacks(JPEG compressions, filtering. zoom in, zoom out, cropping, noises) very well.

  • PDF

3-D Underwater Object Recognition Using Ultrasonic Transducer Fabricated with Porous Piezoelectric Resonator (다공질 압전 초음파 트랜스튜서를 이용한 3차원 수중 물체인식)

  • 조현철;이수호;박정학;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.316-319
    • /
    • 1996
  • In this study, characteristics of ultrasonic transducer fabricated with porous piezoelectric resonator are investigated, 3-D underwater object recognition using the self-made ultrasonic transducer and SOFM(Self-Organizing Feature Map) neural network are presented. The self-made transducer was satisfied the required condition of ultrasonic transducer in water, and the recognition rates for the training data and the testing data were 100 and 95.3% respectively. The experimental results have shown that the ultrasonic transducer fabricated with porous piezoelectric resonator could be applied for sonar system.

  • PDF

Novel Architecture of Self-organized Mobile Wireless Sensor Networks

  • Rizvi, Syed;Karpinski, Kelsey;Razaque, Abdul
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.163-176
    • /
    • 2015
  • Self-organization of distributed wireless sensor nodes is a critical issue in wireless sensor networks (WSNs), since each sensor node has limited energy, bandwidth, and scalability. These issues prevent sensor nodes from actively collaborating with the other types of sensor nodes deployed in a typical heterogeneous and somewhat hostile environment. The automated self-organization of a WSN becomes more challenging as the number of sensor nodes increases in the network. In this paper, we propose a dynamic self-organized architecture that combines tree topology with a drawn-grid algorithm to automate the self-organization process for WSNs. In order to make our proposed architecture scalable, we assume that all participating active sensor nodes are unaware of their primary locations. In particular, this paper presents two algorithms called active-tree and drawn-grid. The proposed active-tree algorithm uses a tree topology to assign node IDs and define different roles to each participating sensor node. On the other hand, the drawn-grid algorithm divides the sensor nodes into cells with respect to the radio coverage area and the specific roles assigned by the active-tree algorithm. Thus, both proposed algorithms collaborate with each other to automate the self-organizing process for WSNs. The numerical and simulation results demonstrate that the proposed dynamic architecture performs much better than a static architecture in terms of the self-organization of wireless sensor nodes and energy consumption.

Unsupervised Machine Learning based on Neighborhood Interaction Function for BCI(Brain-Computer Interface) (BCI(Brain-Computer Interface)에 적용 가능한 상호작용함수 기반 자율적 기계학습)

  • Kim, Gui-Jung;Han, Jung-Soo
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.289-294
    • /
    • 2015
  • This paper proposes an autonomous machine learning method applicable to the BCI(Brain-Computer Interface) is based on the self-organizing Kohonen method, one of the exemplary method of unsupervised learning. In addition we propose control method of learning region and self machine learning rule using an interactive function. The learning region control and machine learning was used to control the side effects caused by interaction function that is based on the self-organizing Kohonen method. After determining the winner neuron, we decided to adjust the connection weights based on the learning rules, and learning region is gradually decreased as the number of learning is increased by the learning. So we proposed the autonomous machine learning to reach to the network equilibrium state by reducing the flow toward the input to weights of output layer neurons.

Immune Algorithms Based 2-DOF Controller Design and Tuning For Power Stabilizer

  • Kim, Dong-Hwa;Park, Jin-Ill
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2278-2282
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, a general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, the immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF

Impelmentation of 2-DOF Controller Using Immune Algorithms

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1531-1536
    • /
    • 2003
  • In this paper the structure of 2-DOF controller based on artificial immune network algorithms has been suggested for nonlinear system. Up to present time, a number of structures of the 2-DOF controllers are considered as 2-DOF (2-Degrees Of Freedom) control functions. However, A general view is provided that they are the special cases of either the state feedback or the modification of PID controllers. On the other hand, The immune network system possesses a self organizing and distributed memory, also it has an adaptive function by feed back law to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation, since antibody recognizes specific antigens which are the foreign substances that invade living creatures. Therefore, it can provide optimal solution to external environment. Simulation results by immune based 2-DOF controller reveal that immune algorithm is an effective approach to search for 2-DOF controller.

  • PDF