• 제목/요약/키워드: Self-organizing network

검색결과 323건 처리시간 0.028초

Unification of Kohonen Neural network with the Branch-and-Bound Algorithm in Pattern Clustering

  • Park, Chang-Mok;Wang, Gi-Nam
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.134-138
    • /
    • 1998
  • Unification of Kohone SOM(Self-Organizing Maps) neural network with the branch-and-bound algorithm is presented for clustering large set of patterns. The branch-and-bound search technique is employed for designing coarse neural network learning paradaim. Those unification can be use for clustering or calssfication of large patterns. For classfication purposes further usefulness is possible, since only two clusters exists in the SOM neural network of each nodes. The result of experiments show the fast learning time, the fast recognition time and the compactness of clustering.

  • PDF

타부 탐색 알고리즘을 적용한 전력 효율적 라우팅 기법 (An Energy Efficient Routing Scheme with Tabu Search Algorithm)

  • 염석;홍원기
    • 정보통신설비학회논문지
    • /
    • 제10권3호
    • /
    • pp.86-91
    • /
    • 2011
  • Wireless sensor network (WSN) is a distributed self-organizing network which contains a large number of tiny multi-functional sensor nodes. The network life time is an important issue in WSN because every sensor node has a constraint on electric supply. In this paper, an energy consumption model is described and a GA-based algorithm will be used to optimize the energy consumption by analyzing the working model of sensor nodes. The model will provide an effective reference of working pattern for WSN. This algorithm is evaluated through analysis and simulations.

  • PDF

ART2 신경회로망을 이용한 밀링공정의 공구마모 진단 (Tool Wear Monitoring in Milling Operation Using ART2 Neural Network)

  • 윤선일;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.120-129
    • /
    • 1995
  • This study introduces a tool wear monitoring technology in face milling operation comprised of an unsupervised neural network. The monitoring system employs two types of sensor signal such as cutting force and acceleration in sensory detection state. The RMS value and band frequency energy of the sensor signals are calculated for te input patterns of neural network. ART2 neural network, which is capable of self organizing without supervised learning, is used for clustering of tool wear states. The experimental results show that tool wear can be effectively detected under various cutting conditions without prior knowledge of cutting processes.

  • PDF

사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크 (A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network)

  • 황유섭
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.43-57
    • /
    • 2012
  • 제조업에 있어서 판매 후 서비스 건수와 내용 등은 향후 서비스 제공을 위한 자원배분의 효율성 증진과 서비스 품질 향상을 위해서도 매우 중요한 정보이다. 따라서 기업들은 향후 발생하는 판매 후 서비스에 대해 정확히 예측하고 그에 따라 적절히 대처하는 능력을 확보할 필요성이 제조업을 중심으로 증가하고 있다. 그러나 실제로 이들 기업들이 활용하고 있는 서비스 수요예측 방법들은 전통적인 통계적인 예측기법이거나, 시뮬레이션을 기반한 기법들이다. 예를 들면, 전통적인 통계적인 예측기법으로는 회귀분석(regression analysis)의 경우, 다양한 제품모델에 대한 판매 후 서비스 발생 패턴이 선형적인 관계가 매우 적음에도 불구하고 선형으로 가정하여 추정한다는 점과 적정한 회귀식을 가정하여야 되며, 이러한 가정이 실제 경영환경에서는 매우 어렵다는 점 등이 기존의 예측기법들의 한계점으로 지적되고 있다. 본 연구에서는 디지털 TV 모델을 생산 판매 하는 A사의 사례연구를 통하여 최근 인공지능연구에서 각광을 받고 있는 사례기반추론(case-based reasoning; CBR) 기법을 활용한 서비스 수요예측 프레임워크를 제안하고자 한다. 또한, 사례기반추론에서 핵심적인 역할 중 하나인 유사 사례추출 방법에 있어서 가장 일반적인 nearest-neighbor 방법 이외의 유사 사례추출 방법을 제안하고자 한다. 특히, 본 연구에서 제안하는 유사 사례추출 방법은 인공신경망(artificial neural network)을 활용한 자기조직화지도(Self-Organizing Maps : SOM) 군집화 기법을 활용한 유사 사례추출 방식으로 이를 활용한 서비스 수요예측 프레임워크에 구현하고, 실제 기업의 판매 후 서비스 데이터를 활용하여 본 연구에서 제안하는 서비스 수요 예측 프레임워크의 유효성을 실증적으로 검증하고자 한다.

조선기술지식 관리를 위한 개선된 데이터 마이닝 시스템 개발 (Development of Enhanced Data Mining System for the knowledge Management in Shipbuilding)

  • 이경호;양영순;오준;박종훈
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.298-302
    • /
    • 2006
  • As the age of information technology is coming, companies stress the need of knowledge management. Companies construct ERP system including knowledge management. But, it is not easy to formalize knowledge in organization. we focused on data mining system by using genetic programming. But, we don't have enough data to perform the learning process of genetic programming. We have to reduce input parameter(s) or increase number of learning or training data. In order to do this, the enhanced data mining system by using GP combined with SOM(Self organizing map) is adopted in this paper. We can reduce the number of learning data by adopting SOM.

  • PDF

Defection Detection Analysis Based on Time-Dependent Data

  • Song, Hee-Seok;Kim, Jae-Kyeong;Chae, Kyung-Hee
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.445-453
    • /
    • 2002
  • Past and current customer behavior is the best predicator of future customer behavior. This paper introduces a procedure on personalized defection detection and prevention for an online game site. The basic idea for our defection detection and prevention is adopted from the observation that potential defectors have a tendency to take a couple of months or weeks to gradually change their behavior (i.e. trim-out their usage volume) before their eventual withdrawal. For this purpose, we suggest a SOM (Self-Organizing Map) based procedure to determine the possible states of customer behavior from past behavior data. Based on this representation of the state of behavior, potential defectors are detected by comparing their monitored trajectories of behavior states with frequent and confident trajectories of past defectors. The key feature of this study includes a defection prevention procedure which recommends the desirable behavior state for the ext period so as to lower the likelihood of defection. The defection prevention procedure can be used to design a marketing campaign on an individual basis because it provides desirable behavior patterns for the next period. The experiments demonstrate that our approach is effective for defection prevention and efficient for defection detection because it predicts potential defectors without deterioration of prediction accuracy compared to that of the MLP (Multi-Layer Perceptron) neural network.

  • PDF

패턴인식을 위한 자율조직망의 적용가능성에 관한 연구 (A Study on the Feasibility of Self-Organizing Net for the Pattern Recognition)

  • 정은호;김진구
    • 한국통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.403-412
    • /
    • 1991
  • 본 논문에서는 숫자, 영문자및 임의의 도형을 인식할 수 있는 자율조직 신경회로망의 한 형태를 제안하였다. 제안된 알고리즘은 미리 정해진 규칙을 부여하지 않아도 입력화상에 좋재하는 특징점의 분포 형태에 따라 시스템 내부에서 자율적으로 유사패턴을 조직, 분류하게 된다. 따라서 학습의 규칙을 만들기 곤란한 임의도형의 인식을 위해 적절하게 이용될 수 있으며, 기억용량의 한계까지는 안정된 인식동작을 한다. 또한 본 알고리즘을 50개 회상패턴에 적용하여 노이즈의 증가에 대한 인식능력을 측정한 결과, 최대 44% 의 노이즈 (SNR 2dB)로 인해 변형된 형태에서도 인식이 가능함으로서 양호한 내잡음특성이 입증되었다.

  • PDF

무선 센서 네트워크를 위한 에너지 효율적인 계층적 클러스터링 알고리즘 (An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks)

  • 차시호;이종언;최석만
    • 디지털산업정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.29-37
    • /
    • 2008
  • Clustering allows hierarchical structures to be built on the nodes and enables more efficient use of scarce resources, such as frequency spectrum, bandwidth, and energy in wireless sensor networks (WSNs). This paper proposes a hierarchical clustering algorithm called EEHC which is more energy efficient than existing algorithms for WSNs, It introduces region node selection as well as cluster head election based on the residual battery capacity of nodes to reduce the costs of managing sensor nodes and of the communication among them. The role of cluster heads or region nodes is rotated among nodes to achieve load balancing and extend the lifetime of every individual sensor node. To do this, EEHC clusters periodically to select cluster heads that are richer in residual energy level, compared to the other nodes, according to clustering policies from administrators. To prove the performance improvement of EEHC, the ns-2 simulator was used. The results show that it can reduce the energy and bandwidth consumption for organizing and managing WSNs comparing it with existing algorithms.

SOM을 이용한 복합지식의 3D 가시화 방법 (3D Visualization of Compound Knowledge using SOM(Self-Organizing Map))

  • 김귀정;한정수
    • 한국콘텐츠학회논문지
    • /
    • 제11권5호
    • /
    • pp.50-56
    • /
    • 2011
  • 본 연구는 복합지식 객체를 기반으로 다차원적인 관계를 쉽게 식별하고 검색할 수 있도록 복합지식의 3D 가시화방법을 제안한다. 이를 위해 복합지식을 네트워크 형태의 의미화된 링크와 노드로 구조화하고 3차원 형태로 보여줄 수 있도록 SOM을 이용한 가시화방법을 제안하였다. 또한, 3D 공간상에서 복합지식을 배치하고 사용자에게 제공함으로써 보다 실감적이고 직관적인 정보검색의 기회를 제공하기 위해서 객체 유사도를 이용한 복합지식의 3D 클러스터링 방법을 제안하였다. SOM을 이용한 복합지식의 3D 가시화와 클러스터링은 복합지식의 맥락과 연계성을 시공간에 가시화하는데 최적의 방법이 될 수 있다.

자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계 (Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture)

  • 박호성;박건준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF