• Title/Summary/Keyword: Self-depletion

Search Result 52, Processing Time 0.027 seconds

Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1

  • Juyeon Ko;Jinhyeong Kim;Jongyun Myeong;Misun Kwak;Insuk So
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.187-196
    • /
    • 2023
  • Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.

Role of Oxidative Stress in the Radiation-Induced Lung Pathogenesis in Mice

  • Park, Eun-Mi;Park, Ji-Sun;Kim, Yun-Jeong;Sung, Jae-Suk;Hwamg, Tea-Sook;Kim, Woo-Chul;Han, Mi-Young;Park, Young-Mee
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.544-550
    • /
    • 2001
  • In pre-transplant total-body irradiation (TBI), the lung is a critical dose-limiting organ. Also, the possible role of oxidative stress was suggested in the development of TBI-induced lung damage. This study explores the association between TBI-induced oxidative stress and the induction of lung pathogenesis by investigating TBI-induced oxidative stress in the lungs of male C57BL/6 mice after a single dose of 10 Gy TBI. We showed significant increases of reactive oxygen species (ROS) formation and lipid peroxidation, and also a depletion and oxidation of glutathione after TBI. There is evidence that pretreatment with 1,10-phenanthroline (o-phen) significantly reduces oxidative stress in the lung. This indicates that the TBI-induced ROS generation involves a metal-catalyzed Fenton-type reaction. A pretreatment of buthionine sulfoximine (BSO) augmented the glutathione depletion and oxidation, but had no effect on the ROS formation and lipid peroxidation up to 6 h after TBI. Histopathological features that are consistent with pneumonitis were observed in the BSO pretreated-mice 1 week after irradiation. The results suggest that TBI-induced oxidative stress in the lung involves a generation of ROS through a Fenton-type reaction. Also, glutathione plays an important inhibitory role in the radiation-induced lung pathogenesis by participating in the self-amplifying cascade subsequent to the ROS generation by irradiation.

  • PDF

Physics-based Algorithm Implementation for Characterization of Gate-dielectric Engineered MOSFETs including Quantization Effects

  • Mangla, Tina;Sehgal, Amit;Saxena, Manoj;Haldar, Subhasis;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.159-167
    • /
    • 2005
  • Quantization effects (QEs), which manifests when the device dimensions are comparable to the de Brogile wavelength, are becoming common physical phenomena in the present micro-/nanometer technology era. While most novel devices take advantage of QEs to achieve fast switching speed, miniature size and extremely small power consumption, the mainstream CMOS devices (with the exception of EEPROMs) are generally suffering in performance from these effects. In this paper, an analytical model accounting for the QEs and poly-depletion effects (PDEs) at the silicon (Si)/dielectric interface describing the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of MOS devices with thin oxides is developed. It is also applicable to multi-layer gate-stack structures, since a general procedure is used for calculating the quantum inversion charge density. Using this inversion charge density, device characteristics are obtained. Also solutions for C-V can be quickly obtained without computational burden of solving over a physical grid. We conclude with comparison of the results obtained with our model and those obtained by self-consistent solution of the $Schr{\ddot{o}}dinger$ and Poisson equations and simulations reported previously in the literature. A good agreement was observed between them.

RNA Editing Enzyme ADAR1 Suppresses the Mobility of Cancer Cells via ARPIN

  • Min Ji Park;Eunji Jeong;Eun Ji Lee;Hyeon Ji Choi;Bo Hyun Moon;Keunsoo Kang;Suhwan Chang
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.351-359
    • /
    • 2023
  • Deamination of adenine or cytosine in RNA, called RNA editing, is a constitutively active and common modification. The primary role of RNA editing is tagging RNA right after its synthesis so that the endogenous RNA is recognized as self and distinguished from exogenous RNA, such as viral RNA. In addition to this primary function, the direct or indirect effects on gene expression can be utilized in cancer where a high level of RNA editing activity persists. This report identified actin-related protein 2/3 complex inhibitor (ARPIN) as a target of ADAR1 in breast cancer cells. Our comparative RNA sequencing analysis in MCF7 cells revealed that the expression of ARPIN was decreased upon ADAR1 depletion with altered editing on its 3'UTR. However, the expression changes of ARPIN were not dependent on 3'UTR editing but relied on three microRNAs acting on ARPIN. As a result, we found that the migration and invasion of cancer cells were profoundly increased by ADAR1 depletion, and this cellular phenotype was reversed by the exogenous ARPIN expression. Altogether, our data suggest that ADAR1 suppresses breast cancer cell mobility via the upregulation of ARPIN.

Nanostructured Polymer Electrolytes for Li-Batteries and Fuel Cells

  • Park, Mun-Jeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.71.2-71.2
    • /
    • 2012
  • There are rising demands for developing more efficient energy materials to stem the depletion of fossil fuels, which have prompted significant research efforts on proton exchange fuel cells (PEFCs) and lithium ion batteries (LIBs). To date, both PEFCs and LIBs are being widely developed to power small electronics, however, their utilization to medium-large sized electric power resources such as vehicle and stationary energy storage systems still appears distant. These technologies increasingly rely upon polymer electrolyte membranes (PEMs) that transport ions from the anode to the cathode to balance the flow of electrons in an external circuit, and therefore play a central role in determining the efficiency of the devices; as ion transport is a kinetic bottleneck compared to electrical conductivity, enormous efforts have been devoted to improving the transport properties of PEMs. In present study, we carried out an in-depth analysis of the morphology effects on transport properties of PEMs. How parameters such as self-assembled nanostructures, domain sizes, and domain orientations affect conductivities of PEMs will be presented.

  • PDF

The Effect of Thirst on Impulsive Purchasing: Focusing on the Mediation of Self-Control (갈증이 충동구매에 미치는 영향: 자기통제의 매개효과를 중심으로)

  • Lee, Sinae;Min, Dongwon
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.143-150
    • /
    • 2021
  • Prior research on consumer psychology has primarily focused on when and why consumers exhibit impulsive behavior, such as impulse buying. This study focuses on physical stimulation during an impulse purchase as another meaningful factor. Specifically, this study examines whether thirst depletes cognitive resources. The results of two experiments show that impulse purchase tendency increases when consumers are thirsty (Exp. 1), and that the loss of self-control is based on the relationship between thirst and impulse purchase tendency (Exp. 2). These findings suggest that physical stimulation, such as thirst, may be a useful indicator of impulsive behavior in consumers.

Effects of Cognitive Resource on the Purchase Intention of Scarcity Products: the Moderating Effect of Need for Cognitive Closure (소비자의 인지적 자원이 한정 제품 구매의도에 미치는 영향: 인지적 종결욕구의 조절효과)

  • MinJeong Kim;HyongJae Rhee
    • Journal of Service Research and Studies
    • /
    • v.12 no.4
    • /
    • pp.125-138
    • /
    • 2022
  • This study has examined the effect of cognitive resource on purchase intention of scarcity products according to the level of need for cognitive closure. In order to find out the effect on purchase intention for products that are presented a shopping environment is supposed, where various timing of consumer promotion reward exist, and where consumers can easily access and experience a lot of cognitive changes. the effect of how these two influences are adjusted according to the level of need for cognitive closure (NFCC). The study divide into two experiments. Research analyzes the behavioral differences of consumers for scarcity message products according to cognitive resource level with a moderating effect of NFCC. As a result of the study, Research according to the level of cognitive resource, when applied scarcity message product showed a negative effect of the cognitive resource (self-regulating resource) depletion level on the purchase intention of high-involvement product with scarcity message (Hypothesis 1). Consumers' purchase intention for limited products was higher at the non-depleted level than at the cognitive resource depletion level, and this difference was found statistically significant. Next, as a result of examining the difference according to the level of NFCC, the difference in the influence of cognitive resource level on purchase intention of scarcity products was found to be statistically significant where the NFCC was low (Hypothesis 2).

Adequate concentration of B cell leukemia/lymphoma 3 (Bcl3) is required for pluripotency and self-renewal of mouse embryonic stem cells via downregulation of Nanog transcription

  • Kang, Songhwa;Yun, Jisoo;Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Ha, Jongseong;Kim, Jae Ho;Baek, Sang Hong;Kwon, Sang-Mo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.92-97
    • /
    • 2018
  • B cell leukemia/lymphoma 3 (Bcl3) plays a pivotal role in immune homeostasis, cellular proliferation, and cell survival, as a co-activator or co-repressor of transcription of the $NF-{\kappa}B$ family. Recently, it was reported that Bcl3 positively regulates pluripotency genes, including Oct4, in mouse embryonic stem cells (mESCs). However, the role of Bcl3 in the maintenance of pluripotency and self-renewal activity is not fully established. Here, we report the dynamic regulation of the proliferation, pluripotency, and self-renewal of mESCs by Bcl3 via an influence on Nanog transcriptional activity. Bcl3 expression is predominantly observed in immature mESCs, but significantly decreased during cell differentiation by LIF depletion and in mESC-derived EBs. Importantly, the knockdown of Bcl3 resulted in the loss of self-renewal ability and decreased cell proliferation. Similarly, the ectopic expression of Bcl3 also resulted in a significant reduction of proliferation, and the self-renewal of mESCs was demonstrated by alkaline phosphatase staining and clonogenic single cell-derived colony assay. We further examined that Bcl3-mediated regulation of Nanog transcriptional activity in mESCs, which indicated that Bcl3 acts as a transcriptional repressor of Nanog expression in mESCs. In conclusion, we demonstrated that a sufficient concentration of Bcl3 in mESCs plays a critical role in the maintenance of pluripotency and the self-renewal of mESCs via the regulation of Nanog transcriptional activity.

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

Gene Expression Profiling of 6-MP (6-mercaptopurine) in Liver

  • Kim Hyung-Lae;Kim Han-Na;Lee Eun-Ju
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2006
  • The KFDA (Korea Food & Drug Administration) has performed a collaborative toxicogenomics project since 2003. Its aim is to construct a toxicology database of 12 compounds administered to mice at initial phase. We chose 6-MP (6-mercaptopurine) which has been used in the treatment of childhood leukemia. It was administered at low (0.224 mg/kg) and at high (2.24 mg/kg) dose (5 mice per group) intraperitonealy to the postnatal 6 weeks mice, then the serum and liver were collected at the indicated time (6, 24 and 72 h) after scarification. Serum biochemical markers for liver toxicity were measured and histopathologic studies also were carried out. The gene expression profiling was carried out by using Applied Biosystems 1700 Full Genome Expression Mouse. By self-organization maps (SOM), we identified groups with unique gene expression patterns, some of them are supposed to be related to 6-MP induced toxicity, including lipid metabolism abnormality, inflammatory response, oxidative stress, ATP depletion and cell death. The potential toxic effects appearing as gene expression changes are dependent of the time of 6-MP but independent of the dosage of it. This study would contribute to establishment of international database as well as national one about hepatotoxicity.