• Title/Summary/Keyword: Self-collision

Search Result 105, Processing Time 0.026 seconds

Simplified Module Based Self-collision Detection for Humanoid Robots (간략화 된 모듈 기반의 휴머노이드 로봇을 위한 자기충돌 탐지)

  • Kwak, Hwan-Joo;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.240-241
    • /
    • 2008
  • We are presenting the efficient and robust simplified module based self-collision detection of humanoid robot simulator. For safe and reliable operations of humanoid robot, the self-collision detection is essential and extremely important. The main methods of self-collision detection are inverse X-Y-Z fixed angles and module distance filtering (MDF). According to experiments on the humanoid robot simulator with the self-collision detection, we could have a confidence about the efficiency of the self-collision.

  • PDF

Efficient Methods for Cloth Animation and Collision Handling (효율적인 옷감 애니메이션 및 충돌 처리 기법)

  • 강영민
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.125-128
    • /
    • 2003
  • This paper proposes efficient cloth animation and collision handling methods. There have been various techniques for the generation of cloth behavior. However, the cloth animation is still a challenging subject in real-time environments. This paper presents an efficient animation method based on implicit integration. The proposed method can efficiently animate virtual cloth object with complex geometry. In addition, this paper also introduces an efficient collision handling method. The collision resolution is another important issue in cloth animation since deformable objects has special collision problem called self-collision. In this paper, the self-collision was successfully avoided in real - time environments.

  • PDF

A Study of PCI (Physical Cell Identification) Assignment in LTE (Long Term Evolution) SON (Self-Organization Network) (LTE 자가 구성 네트워크망에서 물리적 셀 ID할당 방법 연구)

  • Yang, Mochan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.941-946
    • /
    • 2019
  • In this paper, the author analyzed the PCI (Physical Cell Identification) allocation methods in the LTE (Long Term Evolution) SON (Self Organization Network) environment. A variety of techniques have been proposed for how to allocate PCI, and the LTE standard fundamentally explained that collision between a cell and neighbor cells arise while a cell assign the PCI. Therefore, in this paper, the author examined the scenarios of PCI collision, weak collision, and confusion proposed by LTE specification. In addition, the cell central approach and the distributed approach were discussed as solutions for each scenario. In this paper, the author reviewed the approach of graphic coloring technique which was studied recently and explained the strategy of central approach.

Self-Collision Detection/Avoidance for a Rescue Robot by Modified Skeleton Algorithm (보완 골격 알고리듬을 이용한 구난로봇의 자체 충돌감지/회피)

  • Lee, Wonsuk;Hong, Seongil;Park, Gyuhyun;Kang, Younsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.451-458
    • /
    • 2015
  • This paper handles self-collision avoidance for a rescue robot with redundant manipulators. In order to detect all available self-collisions in advance, minimum distances between arbitrary robot parts should be monitored in real-time. For the minimum distance estimation, we suggest a modified method from a previous skeleton algorithm which has less computation burden and realize collision avoidance based on a potential function using the proposed algorithm. The resultant command by collision avoidance should not disturb a given primary task, so null-space of joint solution from a CLIK is utilized for collision avoidance by a gradient projection method.

Treatment of non-resonant spatial self-shielding effect of double heterogeneous region

  • Tae Young Han;Hyun Chul Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.749-755
    • /
    • 2023
  • A new approximation method was proposed for treating the non-resonant spatial self-shielding effects of double heterogeneous region such as the double heterogeneous effect of VHTR fuel compact in the thermal energy range and that of BP compact with BISO. The method was developed based on the effective homogenization method and a spherical unit cell model with explicit coated layers and a matrix layer. The self-shielding factor was derived from the relation between the collision probabilities for a double heterogeneous compact and the effective cross section for the homogenized compact. First, the collision probabilities and transmission probabilities for all layers of the spherical model were calculated using conventional collision probability solver. Then, the effective cross section for the homogenized sphere cell representing the homogenized compact was obtained from the transmission probability calculated using the probability density function of a chord length. The verification calculations revealed that the proposed method can predict the self-shielding factor with a maximum error of 2.3% and the double heterogeneous effect with a maximum error of 200 pcm in the typical VHTR problems with various packing fractions and BP compact sizes.

Self-Collision Avoidance using Configuration Space Approach for Redundant Manipulators (Configuration Space 접근법을 이용한 여유 자유도 로봇의 자기 충돌 회피)

  • 문재성;정완균;염영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.321-324
    • /
    • 2003
  • There are two steps to solve the self-collision avoidance problems for redundant manipulators. First, all links are regarded as cylinders. and then the collisions should be checked among all pairs of the links. Between two cylinders. we can get the collision information derived from the concept or configuration space obstacle in real time. Therefore. it is possible to detect the links where collisions are likely in real time by setting the risk radius which is larger than actual radius. Second. the configuration control points (CCP) should be placed at the ends of the detected links. A cost function is the sum of the distances between the CCPs. To maximize the cost function means the links go far away each other without self-collisions.

  • PDF

Fast Self-Collision Handling in Cloth Simulations Using GPU-based Optimized BVH and R-Triangle (GPU 기반의 최적화된 BVH와 R-Triangle을 이용한 옷감 시뮬레이션에서의 빠른 자기충돌 처리)

  • Moon, Seong-Hyeok;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.373-376
    • /
    • 2022
  • 본 논문에서는 삼각형 메쉬 기반에서 옷감 시뮬레이션(Cloth simulation)에서 계산양이 큰 자기충돌(Self-collision) 처리를 GPU기반으로 가속화시킬 수 있는 방법에 대해 소개한다. CUDA기반으로 병렬 최적화하기 위해 본 논문에서는 1)재귀적으로 계산하여 충돌판정을 하는 BVH(Bounding volume hierarchy) 트리를 GPU기반에서 효율적으로 빌드, 업데이트, 트리 순회하는 방법을 제안하고, 2)삼각형 메쉬 기반에서는 중복되는 프리미티브(Primitive) 충돌검사를 최소화하기 위해 R-Triangle기법을 GPU에서 최적화 시키는 방법을 소개한다. 결과적으로 본 논문에서 제안하는 기법은 GPU 환경에서 옷감 시뮬레이션의 자기충돌과 객체충돌 처리를 빠르고 효율적으로 처리할 수 있도록 하였고, 다양한 장면에서 실험한 결과 모든 결과에서 빠른 시뮬레이션 결과를 얻을 수 있었다.

  • PDF

A Study on the Collision Nozzle for Generating Microbubble by Self-Suction Method (자흡방식에 의해 마이크로버블을 발생시키는 충돌 노즐에 대한 연구)

  • Woo-Jin Kang;Sang-Hee Park;Seong-Hun Yu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1047-1053
    • /
    • 2023
  • An experimental study was performed on the collision nozzle system that generates microbubble by air self-suction using a venturi nozzle. This study experimentally investigates the pressure of a pump and a dissolution tank, water flow rate, air self-suction amount and microbubble generation amount. The experimental conditions were varied by changing the diameter of the collision nozzle (de=4,5,6,7,8mm), the pumping power(0.5hp, 1.0hp) and the capacity of the dissolution tank(4.4L, 8/8L). The pressure change of the pump according to the outlet diameter of the collision nozzle showed that the 1.0hp pump power operated more stably than the 0.5hp pump. The pressure change in the dissolution tank was shown to decrease rapidly as the outlet diameter of the nozzle increased. The flow rate of recirculating water was shown to increase as the nozzle diameter increased. Additionally, it was shown that the pump capacity of 1.0hp increased the flow rate more than that of 0.5hp. The self-suction air flow rate was shown to occur above de=6mm, and the air flow rate increased as the nozzle diameter increased. Also, as the pump capacity increased, the self-suction amount of air increased. It was shown that the amount of microbubble less than 50mm generated was maximum when the nozzle diameter was 6mm, the pump power was 1.0hp, and the dissolution tank capacity was 8.8L.

A Ship Intelligent Anti-Collision Decision-Making Supporting System Based On Trial Manoeuvre

  • Zhuo, Yongqiang;Yao, Jie
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.176-183
    • /
    • 2006
  • A novel intelligent anti-collision decision-making supporting system is addressed in this paper. To obtain precise anti-collision information capability, an innovative neurofuzzy network is proposed and applied. A fuzzy set interpretation is incorporated into the network design to handle imprecise information. A neural network architecture is used to train the parameters of the Fuzzy Inference System (FIS). The learning process is based on a hybrid learning algorithm and off-line training data. The training data are obtained by trial manoeuvre. This neurofuzzy network can be considered to be a self-learning system with the ability to learn new information adaptively without forgetting old knowledge. This supporting system can decrease ship operators' burden to deal with bridge data and help them to make a precise anti-collision decision.

  • PDF

Collision Avoidance Based on Null Space Projection for a Nonholonomic Mobile Manipulator (비홀로노믹 모바일 매니퓰레이터의 영공간 투영에 기반한 충돌 회피)

  • Kim, KyeJin;Yoon, InHwan;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.32-39
    • /
    • 2022
  • Since the mobile platform and the manipulator mounted on it move at the same time in a mobile manipulator, the risk of mutual collision increases. Most of the studies on collision avoidance of mobile manipulators cannot be applied to differential drive type mobile platforms or the end-effector tends to deviate from the desired trajectory for collision avoidance. In this study, a collision avoidance algorithm based on null space projection (CANS) that solves these two problems is proposed. To this end, a modified repulsive force that overcomes the non-holonomic constraints of a mobile platform is generated by adding a virtual repulsive force in the direction of its instantaneous velocity. And by converting this repulsive force into a repulsive velocity and applying it to the null space, the end-effector of the robot avoids a collision while moving along its original trajectory. The proposed CANS algorithm showed excellent performance through self-collision avoidance tests and door opening tests.