• Title/Summary/Keyword: Self-aggregate

Search Result 162, Processing Time 0.022 seconds

The Quality Properties of Self Consolidating Concrete Using Lightweight Aggregate (경량골재를 사용한 자기충전 콘크리트의 품질 특성)

  • Kim, Yong Jic;Choi, Yun Wang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.573-580
    • /
    • 2010
  • This paper presents the development of self-consolidating concrete (SCC) using lightweight aggregates. SCC using Lightweight aggregate properties have been evaluated in terms of flowability, segregation resistance and filling capacity of fresh concrete as per the standards of the Japanese Society of Civil Engineering (JSCE). The measurement of the mechanical properties of hardened SCC using lightweight aggregate, including compressive strength, splitting tensile strength, elastic moduli and density, as well as its dry shrinkage and carbonation properties were also carried out. The characteristics of SCC using lightweight aggregate at the fresh state showed that as the use of the lightweight aggregate, the flowability improves without exception of Mix No. 9 but the segregation resistance tends to decrease without exception of Mix No. 3, 4 and 5. The 28 days compressive strength of the SCC using lightweight aggregate was found to be 30 MPa or higher. The relationship between the compressive strength and the splitting tensile strength was found to be similar to the expression presented by CEB-FIP, and the relationship between the compressive strength and the elastic moduli was found to be similar to the expression suggested by ACI 318-08 which takes into consideration the density of concrete. The density of the SCC using lightweight aggregate decreased by up to 26% compared to that of the control SCC. Also, The dry shrinkage and carbonation depth of the SCC using lightweight aggregate increased compared to that of the control SCC.

Life-Cycle Cost Optimization of Slab Bridges with Lightweight Concrete (경량 콘크리트를 이용한 슬래브교의 생애주기비용 최적설계)

  • 정지승;조효남;최연왕;민대홍;이종순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.257-264
    • /
    • 2002
  • This study presents a life-cycle cost (LCC) effectiveness of a concrete with lightweight aggregate. A number of researchers have made their efforts to develop a lightweight concrete, since it is difficult to apply conventional concrete using general aggregate to heavy self-weight structures such as long span bridges. In this study, an optimum design for minimizing the life-cycle cost of concrete slab bridges is performed to evaluate the life cycle cost effectiveness of the lightweight concrete relative to conventional one from the standpoint of the value engineering. The data of physical properties for new concrete can be obtained from basic experimental researches. The material properties of conventional one are acquired by various reports. This study presents a LCC effectiveness of newly developed concrete, which is made by artificial lightweight aggregate. A number of researchers have made their efforts to develop a lightweight concrete, since it is difficult to apply conventional concrete using general aggregate to heavy self-weight structures such as long span bridges. From the results of the numerical investigation, it may be positively stated that the new concrete lead to, the longer span length, the more economical slab bridges compared with structures using general concrete.

  • PDF

Influence of Various Replacement Ratio of Electric Arc Furnace Fine Aggregate on Fundamental Properties of Limestone Based High Strength Mortar (전기로 산화 슬래그 잔골재 치환율 변화가 석회암 기반 초고강도 모르타르의 기초적 특성에 미치는 영향)

  • Moon, Byeong-Yong;Song, Yuan-Ru;Lee, Jea-Hyeon;Kim, Min-sang;Han, In-Deok;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.45-46
    • /
    • 2016
  • As the demand for super tall buildings is currently increased in domestic and foreign countries, some kinds of ultra-high strength concretes are being developed actively. Since the cross section of concrete becomes smaller thanks to such kinds of ultra-high strength concretes, the concrete structures can be much bigger, more gigantic and much ultra-high. And as another benefit which is generated thanks to the enhancement of the durability performance, the maintenance expenses are also saved. However, since low W/B ultra-high concrete has a high possibility that many cracks can occur in the initial period due to the self-shrinkage caused by the self-desiccation as one of the blending characteristics, the problem becomes bigger by influencing the safety of a structure. Therefore, in this study, it is intended to analyze the effects of substituting some limestone-based ultra-high strength mortar with electric arc furnace oxidizing slag fine aggregates on the self-shrinkage of mortar.

  • PDF

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

The self-compacting property of concrete as to specific gravity and mixing proportion of lightweight coarse aggregate (경량 굵은골재 비중 및 혼합률에 따른 콘크리트의 자기충전성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Choi, Wook;Lee, Sang-Ho;Cho, Sun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • Lightweight concrete is known for its advantage of reducing the self-weight of the structures, reducing the areas of sectional members as well as making the construction convenient. Thus the construction cost can be saved when applied. to . structures such as long-span bridge and high rise buildings. However, the lightweight concrete requires specific design mix method that is quite different from the typical concrete, since using the typical mix method would give rise the material segregation as well as lower the strength by the reduced weight of the aggregate. In order to avoid such problems, it is recommended to apply the design mix method of high performance self-compacting concrete for the lightweight concrete. Therefore, this study introduces a production of self-compacting concrete, PF-modified and improved version of Nan-Su's design mix method of self-compacting concrete. Through a series of test mixes conducted during the study, the quality of the concrete at its fresh condition has been evaluated per the 2nd class rating standards of self-compacting concrete published by JSCE, especially focused in its fluidity, segregation resistance ability, and filling ability.

  • PDF

A Study on the Mix Design of Antiwashout Underwater Concrete According to Compressive Strength (압축강도에 따른 수중불분리 콘크리트의 배합설계에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.91-97
    • /
    • 2003
  • At present, the antiwashout underwater concretes are used as popular construction materials in European countries, the United States and Japan. The water-soluble polymers in the antiwashout underwater concretes provide excellent segregation or washout resistance, self-compaction and self-leveling property to the concretes. The purpose of this study is to recommend to optimum mix proportions of antiwashout underwater concretes according to compressive strength of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$. The antiwashout underwater concretes are prepared with various unit cement content, unit water content, sand-aggregate ratio, unit antiwashout agent and superplasticizer content. And they are tested for flowability, and compressive strength. From the test results, it is possible to recommend the optimum mix proportions of antiwashout underwater concretes according to compressive strengths within the range of 300kgf/$\textrm{cm}^2$ to 500kgf/$\textrm{cm}^2$.

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

Sustainable self compacting acid and sulphate resistance RAC by two stage mixing approaches

  • Rajhans, Puja;Kisku, Nishikant;Nayak, Sanket;Panda, Sarat Kumar
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.55-70
    • /
    • 2020
  • In this research article, acid resistance, sulphate resistance and sorptivity of self compacted concrete (SCC) prepared from C&D waste have been discussed. To improve the above properties of self compacted recycled aggregate concrete (SCRAC) along with mechanical and durability properties, different two stage mixing approaches (TSMA and TSMAsfc) were followed. In the proposed two stage mixing approach (TSMAsfc), silica fume, a proportional amount of cement and a proportional amount of water were mixed in premix stage which fills the pores and cracks of recycled aggregate concrete (RAC). The concrete specimen prepared using above mixing approaches were immersed in 1% concentration of sulphuric acid (H2SO4) and magnesium sulphate (MgSO4) solution for 28, 90 and 180 days for evaluating the acid resistance of SCRAC. Experimental results concluded that the proposed two stage mixing approach (TSMAsfc) is most suitable for acid resistance and sulphate resistance in terms of weight loss and strength loss due to the elimination of pores and cracks in the interfacial transition zone (ITZ). In modified two stage mixing approach, the pores and cracks of recycled concrete aggregate (RCA) were filled up and make ITZs of SCRAC stronger. Microstructure analysis was carried out to justify the reason of improvement of ITZs by electron probe micro analyser (EPMA) analysis. X-ray mapping was also done to know the presence of strength contributing elements presents in the concrete sample. It was established that SCRAC with modified mixing approach have shown improved results in terms of acid resistance, sulphate resistance, sorptivity and mechanical properties.

How to Recover From the Great Recession: The Case of a Two-Sector Small Open Economy with Traded and Non-Traded Capital

  • Jeon, Jong-Kyou
    • East Asian Economic Review
    • /
    • v.17 no.2
    • /
    • pp.161-206
    • /
    • 2013
  • Since the global financial crisis in 2008, the world economy has been suffering from the Great Recession characterized by high and persistent unemployment as well as drastic fall in asset prices. Real business cycle theory or new-Keynesian economics which has been the dominant paradigm in macroeconomics for the last four decades is unable to explain the high and persistent unemployment during the Great Recession. This implies that the economics of Keynes should be taken seriously again as a tool to explain the Great Recession. Farmer (2012) proposes a new way of interpreting the economics of Keynes by providing it with a solid micro-foundation based on labor markets with search. According to Farmer (2012), aggregate economic activity independently depends on the long-term self-fulfilling expectations about the stock prices. As a consequence, the government or the central bank should implement a policy that influences the public's confidence about the stock market. For an open economy like the Korean economy, it is not only stock price but also the price of asset such as house that matters more for the aggregate economic activity. Households in the Korean economy hold more than 70 percent of their wealth in the form of real estate asset, especially housing asset. This makes the public's confidence about the future prices of houses even more important in explaining the business cycles of the Korean economy. Policymakers should implement policies to improve the confidence of households about the housing market to recover from the recession caused by a fall in house prices. Little theoretical work has been done in explaining fluctuations in the aggregate economic activity from the point of house prices. This paper develops a small open economy model with traded and non-traded capital based on Farmer (2012) and shows that the aggregate economic activity also independently depends on the households' self-fulfilling expectations about the future prices of non-traded asset such as houses.

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.