• 제목/요약/키워드: Self-Sharpening

검색결과 8건 처리시간 0.022초

텅스텐 중합금 복합관통자 제조 (Manufacturing of Tungsten Heavy Alloy Composites for Kinetic Energy Penetrator)

  • 송흥섭;김은표;박경진;류주하
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.369-375
    • /
    • 2004
  • A new concept of tungsten heavy alloy composite was suggested and manufactured in this study for the kinetic energy penetrator. The composite heavy alloy was composed of two parts, the center was molybdenum added heavy alloy compositions which were designed to promote the self-sharpening effect and outside was conventional heavy alloy in order to sustain the severe stress condition in the muzzle during the firing. The center part showed an intergranular and brittle mode at tungsten/tungsten interfaces by which self-sharpening effect could be activated. On the other hand, that of outside showed conventional ductile fracture mode under high strain rate condition. From the sub-scale penetration test, the depth of penetration in heavy alloy composites showed greater values than those of conventional tungsten heavy alloys. It is suggested that the heavy alloy composite could be considered as one of the future penetrator materials.

금형재료의 정밀연삭을 위한 다기공 다이아몬드 숫돌의 개발 (Development of Multi-Porous Diamond Wheel for Smooth and Mirror Finishing of Die Materials)

  • 허성중
    • 기술사
    • /
    • 제30권6호
    • /
    • pp.144-152
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted to be studied in this paper. Wheels, that are employed for the smooth and mirrow finishing of die materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond abrasive grains were bonded firmly by a melamine to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work sufaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are explained.

  • PDF

다기공 다이아몬드 연삭숫돌의 개발에 관한 연구 (A Study on the Development of Diamond Grinding Wheel with Multi-Porous Structure)

    • 한국생산제조학회지
    • /
    • 제7권2호
    • /
    • pp.100-107
    • /
    • 1998
  • Diamond wheels with fine grains and multi-porous structures are newely trial developed for smoothing and mirror finishing materials. Grinding wheel must have performed both to remove tool marks efficienitly and to contact elastically with curved surfaces, that are employed for ultra precision and high performance grinding of difficult-to materials such as tungsten carbide alloy using tool and die materials, Diamond grains are bonded by a melamine resin to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures are developed to increase the flexibility of the grinding wheel, and to induce self-sharpening by increasing contact pressure between the grinding wheel and workpiece surfaces. In this paper, melamine-bonded diamond wheels try to manufacture, then the forming method of grinding wheel are suggested, and the grinding characteristics of melamine-bonded diamond grinding wheel are also illustrated.

  • PDF

난삭재의 초정밀.고능률 연삭가공을 위한 다이아몬드숫돌의 개발 (Development of diamond wheel for ultra precision and high performance grinding of difficult-to-materials)

  • 허성중
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2172-2178
    • /
    • 1997
  • Development of diamond wheel with fine grains and multi-pore structures were newely attempted. Wheels, that are employed for ultra precision and high performance grinding of difficult-to materials such as tungsten carbide alloy using tool and die materials, must have both performances to remove tool marks efficiently and to contact elastically with curved surfaces. Diamond grains were bonded firmly by a melamine resin to prevent the decrease of machining efficiency due to grain sinking within the bond materials. Also, highly foamed structures were developed to increase the flexibility of the wheel, and to induce active self-sharpening by increasing contact pressure between the wheel and work surfaces. In this paper, melamine-bonded diamond wheels are trial manufactured, then the forming method of wheels are suggested, and the grinding characteristics of wheels are also illustrated.

웨이블릿 기반의 자기참조 기법을 이용한 블라인드 워터마킹 (Wavelet based Blind Watermarking using Self-reference Method)

  • 박영일;김석태
    • 한국통신학회논문지
    • /
    • 제33권1C호
    • /
    • pp.62-67
    • /
    • 2008
  • 본 논문에서는 웨이블릿 기반의 자기참조 기법을 이용한 블라인드 워터마킹 방법을 제안한다. 먼저 원 영상을 웨이블릿 변환 한다. 다음 저주파 대역을 제외한 모든 부대역을 영(zero)으로 설정한 후 웨이블릿 역변환을 거쳐 자기참조 영상을 만든다. 그리고 원 영상과 자기참조 영상의 화소 값의 차이에 따른 특정 영역을 선택하여 랜덤 시퀀스를 만든 후 워터마크로 사용하여 삽입한다. 다양한 영상에 대해 워터마크의 삽입과 추출 실험한 결과 제안한 방법은 충실도가 높을 뿐만 아니라 JPEG 압축, 필터링, 샤프닝, 블러링 등의 영상처리, 그리고 노이즈에 안정성을 가지고 있다.

다이아몬드 휠에 의한 세라믹 연삭의 연삭력 평가 (Evaluation on Grinding Force of Ceramic Grinding by the Diamond Wheel)

  • 문홍현;김성청;공재향;박병규;소의열
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.43-47
    • /
    • 2002
  • In this study, through the experimental results of grinding ratio, grinding force and surface roughness with the obtained wear amount of diamond wheel and ceramic material during the grinding process, the following conclusions could be found. In the case of $Si_3N_4$, the wear of diamond wheel is large while the grinding force is stable and the range of change in surface roughness is small. for the case of $AL_2O_3$ and $ZrO_3$, while the wear of diamond wheel is getting smaller, the grinding force is increasing but the value of surface roughness is decreasing. For grinding with the vitrified bond wheel, it seems that the self-sharpening can be found for $Si_3N_4$ and the glazing effect of the cutting edge for $AL_2O_3$ and $ZrO_3$.

  • PDF

Development of Tungsten Heavy Alloy with Hybrid Structure for Kinetic Energy Penetrator

  • Baek, Woon-Hyung;Kim, Eun-Pyo;Song, Heung-Sub;Hong, Moon-Hee;Lee, Seong;Kim, Young-Moo;Lee, Sung-Ho;Noh, Joon-Woong;Ryu, Joo-Ha
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.944-945
    • /
    • 2006
  • A new tungsten heavy alloy with hybrid structure was manufactured for the kinetic energy penetrator. The tungsten heavy alloy is composed of two parts: core region is molybdenum added heavy alloy to promote the self-sharpening; outer part encompassing the core is conventional heavy alloy to sustain severe load in a muzzle during firing. From ballistic test, it was found that the penetration performance of the hybrid structure tungsten heavy alloy is higher than that of conventional heavy alloy. This heavy alloy is thought to be very useful for the penetrator in the near future.

  • PDF

열처리 공정을 통한 텅스텐 중합금 관통자의 관통능력 향상에 관한 연구 (Study on the Improving Penetration Performance of Tungsten Heavy Alloy Penetrator by Heat Treatment)

  • 김명현;노주영;이영우;안대희
    • 한국산학기술학회논문지
    • /
    • 제21권2호
    • /
    • pp.322-327
    • /
    • 2020
  • 송탄통 분리형 날개안정철갑탄은 주로 전차체계에서 물리적인 힘으로 장갑 등과 같은 목표물을 관통 및 파괴하는 탄약으로 주로 열화우라늄 또는 텅스텐 중합금 재료를 사용한 관통자가 사용되고 있으나, 가공 및 환경적 측면 등의 이유로 텅스텐 중합금 관통자가 선호되는 실정이다. 텅스텐 중합금 관통자는 재료의 강도 및 인성에 따라 자기첨예화 효과에 의해 관통능력이 결정되는데, 본 연구에서는 인장강도 및 충격에너지에 가장 큰 영향을 받는 것으로 나타났다. 관통능력에 대한 기계적 특성치들에 대한 상관분석 결과, 관통능력에 대하여 인장강도는 상관계수 0.721의 비례관계를, 충격에너지는 상관계수 -0.599의 반비례관계를 나타냈으며, 추가적인 열처리 공정을 통하여 재료의 충격에너지가 감소시킴으로써 관통능력이 향상되는 사실을 실험적으로 입증하였다. 텅스텐 중합금 관통자의 관통능력을 향상시키기 위해서는 재료의 연신율을 약 9 % 이상으로, 인장강도를 약 123 kg/㎟ 이상으로 유지하는 것이 바람직한 것으로 나타났으며, 특히 충격에너지를 약 6.8 kg·m/㎠ 이하로 제어하는 것이 관통능력 향상에 있어서 가장 중요한 요소로 생각된다.