• Title/Summary/Keyword: Self-Organizing Maps (SOM)

Search Result 57, Processing Time 0.035 seconds

Bayesian Learning for Self Organizing Maps (자기조직화 지도를 위한 베이지안 학습)

  • 전성해;전홍석;황진수
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.251-267
    • /
    • 2002
  • Self Organizing Maps(SOM) by Kohonen is very fast algorithm in neural networks. But it doesn't show sure rules of training results. In this paper, we introduce to Bayesian Learning for Self Organizing Maps(BLSOM) which combines self organizing maps with Bayesian learning. So it supports explanatory power of models and improves prediction. BLSOM has global optima anywhere but SOM has not. This is proved by experiment in this paper.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

Financial Performance Evaluation using Self-Organizing Maps: The Case of Korean Listed Companies (자기조직화 지도를 이용한 한국 기업의 재무성과 평가)

  • 민재형;이영찬
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.3
    • /
    • pp.1-20
    • /
    • 2001
  • The amount of financial information in sophisticated large data bases is huge and makes interfirm performance comparisons very difficult or at least very time consuming. The purpose of this paper is to investigate whether neural networks in the form of self-organizing maps (SOM) can be successfully employed to manage the complexity for competitive financial benchmarking. SOM is known to be very effective to visualize results by projecting multi-dimensional financial data into two-dimensional output space. Using the SOM, we overcome the problems of finding an appropriate underlying distribution and the functional form of data when structuring and analyzing a large data base, and show an efficient procedure of competitive financial benchmarking through clustering firms on two-dimensional visual space according to their respective financial competitiveness. For the empirical purpose, we analyze the data base of annual reports of 100 Korean listed companies over the years 1998, 1999, and 2000.

  • PDF

Rethinking of Self-Organizing Maps for Market Segmentation in Customer Relationship Management (고객관계관리의 시장 세분화를 위한 Self-Organizing Maps 재고찰)

  • Bang, Joung-Hae;Hamel, Lutz;Ioerger, Brian
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.17-34
    • /
    • 2007
  • Organizations have realized the importance of CRM. To obtain the maximum possible lifetime value from a customer base, it is critical that customer data is analyzed to understand patterns of customer response. As customer databases assume gigantic proportions due to Internet and e-commerce activity, data-mining-based market segmentation becomes crucial for understanding customers. Here we raise a question and some issues of using single SOM approach for clustering while proposing multiple self-organizing maps approach. This methodology exploits additional themes on the attributes that characterize customers in a typical CRM system. Since this additional theme is usually ignored by traditional market segmentation techniques we here suggest careful application of SOM for market segmentation.

  • PDF

Korean Verb Clustering Using Self-Organizing Maps (Self-Organizing Map을 이용한 한국어 동사 클러스터링)

  • 박성배;장병탁;김영택
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.183-184
    • /
    • 1998
  • 본 논문에서는 목적어-동사 관계의 분포에 따라 한국어 동사를 자동적으로 클러스터링하는 방법을 제시한다. SOM(Self-Organizing Map)이 입력 패턴을 분석하고 가시화하는데 뛰어난 성능을 보이므로, 본 논문에서는 클러스터링하는 방법으로 SOM을 채택하였다. 일단 맵(map)이 만들어지고 나면 학습하는 동안 경험하지 못한 동사도 쉽게 적당한 클러스터로 분류될 수 있고 클러스터들 간의 의미 거리도 맵을 이용하여 쉽게 계산할 수 있다. 본 논문에서 제안한 방법을 명사 확률 분포의 상대 엔트로피(relative entropy)에 기반한 클러스터링 방법과 비교해 본 결과, SOM에 의해 만들어진 동사 클러스터가 상대 엔트로피를 이용해서 만들어진 클러스터를 잘 반영한다는 것을 알 수 있었다.

  • PDF

Semantic Correspondence of Database Schema from Heterogeneous Databases using Self-Organizing Map

  • Dumlao, Menchita F.;Oh, Byung-Joo
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.217-224
    • /
    • 2008
  • This paper provides a framework for semantic correspondence of heterogeneous databases using self- organizing map. It solves the problem of overlapping between different databases due to their different schemas. Clustering technique using self-organizing maps (SOM) is tested and evaluated to assess its performance when using different kinds of data. Preprocessing of database is performed prior to clustering using edit distance algorithm, principal component analysis (PCA), and normalization function to identify the features necessary for clustering.

  • PDF

Hybrid Self Organizing Map using Monte Carlo Computing

  • Jun Sung-Hae;Park Min-Jae;Oh Kyung-Whan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.381-384
    • /
    • 2006
  • Self Organizing Map(SOM) is a powerful neural network model for unsupervised loaming. In many clustering works with exploratory data analysis, it has been popularly used. But it has a weakness which is the poorly theoretical base. A lot more researches for settling the problem have been published. Also, our paper proposes a method to overcome the drawback of SOM. As compared with the presented researches, our method has a different approach to solve the problem. So, a hybrid SOM is proposed in this paper. Using Monte Carlo computing, a hybrid SOM improves the performance of clustering. We verify the improved performance of a hybrid SOM according to the experimental results using UCI machine loaming repository. In addition to, the number of clusters is determined by our hybrid SOM.

  • PDF

Dynamic Web Recommendation Method Using Hybrid SOM (하이브리드 SOM을 이용한 동적 웹 정보 추천 기법)

  • Yoon, Kyung-Bae;Park, Chang-Hee
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.471-476
    • /
    • 2004
  • Recently, provides information which is most necessary to the user the research against the web information recommendation system for the Internet shopping mall is actively being advanced. the back which it will drive in the object. In that Dynamic Web Recommendation Method Using SOM (Self-Organizing Feature Maps) has the advantages of speedy execution and simplicity but has the weak points such as the lack of explanation on models and fired weight values for each node of the output layer on the established model. The method proposed in this study solves the lack of explanation using the Bayesian reasoning method. It does not give fixed weight values for each node of the output layer. Instead, the distribution includes weight using Hybrid SOM. This study designs and implements Dynamic Web Recommendation Method Using Hybrid SOM. The result of the existing Web Information recommendation methods has proved that this study's method is an excellent solution.

Validity Study of Kohonen Self-Organizing Maps

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.507-517
    • /
    • 2003
  • Self-organizing map (SOM) has been developed mainly by T. Kohonen and his colleagues as a unsupervised learning neural network. Because of its topological ordering property, SOM is known to be very useful in pattern recognition and text information retrieval areas. Recently, data miners use Kohonen´s mapping method frequently in exploratory analyses of large data sets. One problem facing SOM builder is that there exists no sensible criterion for evaluating goodness-of-fit of the map at hand. In this short communication, we propose valid evaluation procedures for the Kohonen SOM of any size. The methods can be used in selecting the best map among several candidates.

Principal Components Self-Organizing Map PC-SOM (주성분 자기조직화 지도 PC-SOM)

  • 허명회
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.321-333
    • /
    • 2003
  • Self-organizing map (SOM), a unsupervised learning neural network, has been developed by T. Kohonen since 1980's. Main application areas were pattern recognition and text retrieval. Because of that, it has not been spread to statisticians until late. Recently, SOM's are frequently drawn in data mining fields. Kohonen's SOM, however, needs improvements to become a statistician's standard tool. First, there should be a good guideline as for the size of map. Second, an enhanced visualization mode is wanted. In this study, principal components self-organizing map (PC-SOM), a modification of Kohonen's SOM, is proposed to meet such needs. PC-SOM performs one-dimensional SOM during the first stage to decompose input units into node weights and residuals. At the second stage, another one-dimensional SOM is applied to the residuals of the first stage. Finally, by putting together two stages, one obtains two-dimensional SOM. Such procedure can be easily expanded to construct three or more dimensional maps. The number of grid lines along the second axis is determined automatically, once that of the first axis is given by the data analyst. Furthermore, PC-SOM provides easily interpretable map axes. Such merits of PC-SOM are demonstrated with well-known Fisher's iris data and a simulated data set.