• Title/Summary/Keyword: Self diffusion

Search Result 386, Processing Time 0.027 seconds

Unusual ALD Behaviors in Functional Oxide Films for Semiconductor Memories

  • Hwang, Cheol Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.77.1-77.1
    • /
    • 2013
  • Atomic layer deposition (ALD) is known for its self-limiting reaction, which offers atomic-level controllability of the growth of thin films for a wide range of applications. The self-limiting mechanism leads to very useful properties, such as excellent uniformity over a large area and superior conformality on complex structures. These unique features of ALD provide promising opportunities for future electronics. Although the ALD of Al2O3 film (using trimethyl-aluminum and water as a metal precursor and oxygen source, respectively) can be regarded as a representative example of an ideal ALD based on the completely self-limiting reaction, there are many cases deviating from the ideal ALD reaction in recently developed ALD processes. The nonconventional aspects of the ALD reactions may strongly influence the various properties of the functional materials grown by ALD, and the lack of comprehension of these aspects has made ALD difficult to control. In this respect, several dominant factors that complicate ALD reactions, including the types of metal precursors, non-metal precursors (oxygen sources or reducing agents), and substrates, will be discussed in this presentation. Several functional materials for future electronics, such as higher-k dielectrics (TiO2, SrTiO3) for DRAM application, and resistive switching materials (NiO) for RRAM application, will be addressed in this talk. Unwanted supply of oxygen atoms from the substrate or other component oxide to the incoming precursors during the precursor pulse step, and outward diffusion of substrate atoms to the growing film surface even during the steady-state growth influenced the growth, crystal structure, and properties of the various films.

  • PDF

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode (리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향)

  • Kim, Yerang;Park, Jihye;Hwang, Yujin;Jung, Cheolsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.51-68
    • /
    • 2022
  • Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

Dielectric and Transport Properties of Acetonitrile at Varying Temperatures: a Molecular Dynamics Study

  • Orhan, Mehmet
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1469-1478
    • /
    • 2014
  • Use of acetonitrile in electrolytes promotes better operation of supercapacitors. Recent efforts show that electrolytes containing acetonitrile can also function in a wide range of operating temperatures. Therefore, this paper addresses the dielectric relaxation processes, structure and dynamic properties of the bulk acetonitrile at various temperatures. Systems of acetonitrile were modeled using canonical ensemble and simulated by employing Molecular Dynamics method. Results show that interactions among the molecules were correlated within a cut-off radius while parallel and anti-parallel arrangements are observed beyond this radius at relatively high and low temperatures respectively. Furthermore, effects of C-C-N and C-H bending modes were greatly appreciated on the power spectral density of time rate change of dipole-dipole correlations whereas frequency shifts were observed on all modes at the lowest temperature under consideration. Linear variations with temperature were depicted for reorientation times and self-diffusion coefficients. Shear viscosity was also computed with a good accuracy within a certain range of the temperature as well.

A Study on Conquest Plans of the Barrier and Resistance in Innovation Management (혁신관리에 있어서 장애와 저항의 극복방안)

  • Lee, Seung-Hui;No, Gyu-Seong
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.13-28
    • /
    • 2005
  • The purpose of this study is to explore conquest plans of the barrier and resistance in innovation management. This paper focuses to understand the model of innovation that reflects adoption process stages and identify the factors that drive the resistance of consumers. Whenever organizations try to plan and implement some kind of innovation in organizations, they confront resistance in many ways. By understanding innovation resistance, organizations can not only design better innovations but can develop strategies to reduce resistance. Thus they accelerate innovation. Understanding the factors that drive the innovation resistance has important implications for both theoretical development and managerial action. These results indicate that people resist innovation strongly when it betrays their value, needs and beliefs or when they felt the pressure on self-conviction and mental risk, loss, and lack of knowledge.

  • PDF

Low Strain Rate Flame Extinction Characteristic of Oxygen Enhanced Opposed Flow Partially Premixed Flame in a Mesoscale Channel (채널 내부 대항류 산소부화 부분예혼합 화염의 저신장율 소화특성)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.243-244
    • /
    • 2014
  • The opposed flow flame in a mesoscale channel was constructed to observe the flame stabilization behaviors at low strain rate conditions (<$10s^{-1}$). The purpose of this study is to get the overall flame behaviors of partially premixed flames with oxygen enhanced conditions at low strain rates. The oxygen ratio in oxidizer was changed from 18 to 30 %. Conclusively, the flame extinction limit approached to about $1s^{-1}$, and divided into three representative regimes corresponding to self propagating flame, transitional flame, quenching flame regimes.

  • PDF

A Comparative Study on the Characteristics of Male Innovators and Opinion Leaders Across Product Categories (다 상품군에서의 남성 혁신자와 의견선도자의 특성 비교)

  • 김찬주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.1
    • /
    • pp.67-81
    • /
    • 1997
  • The main purpose of this study was to compare the characteristics of male innovators and of male opinion leaders across product categories in terms of personality, attitudes, social participation, media usage patterns and demographic aspects. Six product categories such as clothing, cosmetics, small electronic appliances, medium-large electronic appliances, interior supplies and sports-leisure goods was used. A valid and reliable self-report scale was used to measure innovativeness and opinion leadership for 423 male adults living in social area Analyses showed that venturesomeness is the most common characteristics between innovators and opinion leaders across product categories. Innovators showed higher tendency of narcissism while opinion leadership showed higher cosmopolitainsm. Common charateristics of innovators and of opininion leaders of both clothing and cosmetics are cosmopolitanism, narcissism, exhibitionism, venturesomeness. The degrees of social participation and media usage patterns were different according to product categories for both innovators and opinion leaders. The implications of these findings for diffusion theory and merchandising were discussed.

  • PDF

Filling the Submicron Contact Holes with Al Alloys (AI 합금의 Contact Hole Filling 에 관한 연구)

  • 김용길
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.474-479
    • /
    • 1993
  • Submicron contact hole filling with aluminum alloys has been achieved with a multistep metallization method, which utilizes a metal " flow" or self-diffusion process at elevated temperatures after the metal was sputter-deposited. A multi-chamber, modular sputtering system was employed to deposit aluminum alloys and subsequently to anneal the deposited metal films under vacuum at high temperatures. The film were deposited on 200 mm wafers with planar, dc magnetron sputtering sources without anysubstrate bias. The basic process steps studied for the multistep metallization include an initial layer deposition at low temperatures less than $100^{\circ}C$, and an annealin gstep at elevated temperatures, between 450 and $550^{\circ}C$. The degree of planarization or step coverage was dependent strongly upon the temperature and time of the flow step and complete filling of the submicron contacts with aluminum alloys was achieved. Responsible mechanisms for the enhancement in step coverge and factros determining uniform and reproducible flow of aluminum alloys during the high temperauture step are discussed.discussed.

  • PDF

A Study on the sustainability of Jeju Haenyeo, an UNESCO Intangible Cultural Heritage (제주해녀 인류무형문화유산 유지 방안 연구)

  • Yoo, Jaeho;Jung, Yeon Kye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.1228-1231
    • /
    • 2017
  • The development of ICT brings the change in daily life and the digitized data are increasing in usage. The combination between GPS and internet results in extensive diffusion of space related information by way of smartphone, sensor and SNS. Jeju Island is only one special self-governing province in Republic of Korea and deserves to be proud of the unique culture, having those designated Intangible Cultural Heritage from UNESCO such as Culture of Jeju Haenyeo or Women Divers and Jeju Chilmeoridang Yeongdeunggut or Exorcism of Praying big Catch. In this paper, I suggest how to preserve fadable tradition economically and technically and expect to develop Haenyeo fitted portable sensors and IoT platform.

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.

Study on the Flow and Mass Transfer in a PASB Arc Plasma Chamber (PASB 아크 플라즈마 챔버에서 발생하는 유동 및 물질전달에 관한 연구)

  • Lee, Jong-Chul;Kim, Youn-J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.7-13
    • /
    • 2008
  • The computational investigation is performed to find out the interaction of arc plasmas with surrounding materials and the thermal flow characteristics in a PASB (Puffer-Assisted Self-Blast) chamber, which is one of new breaking concepts in $SF_6$ switchgears. It is very important to define the flow and mass transfer happened during the full arcing history for further understanding complex physics inside the chamber. In this study, we have considered two diffusion processes by the hot arc plasma, one is PTFE nozzle ablation and the other is Cu electrode evaporation, simultaneously. It was found that the principle of the pressure-rise inside the chamber is confirmed by the computational results and the increase of the electrical conductivity of the residual gas near current zero is critical to the chamber design.