• 제목/요약/키워드: Self Organizing Map(SOM)

검색결과 235건 처리시간 0.022초

자기 조직화 맵 기반 유사화상 검색의 고속화 수법 (A Method of Highspeed Similarity Retrieval based on Self-Organizing Maps)

  • 오군석;양성기;배상현;김판구
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.515-522
    • /
    • 2001
  • 특징정보를 기반으로 한 유사화상 검색은 화상 데이터베이스에 있어서 중요한 과제의 하나이다. 화상 데이터의 특징정보를 각 화상을 식별하는데 유용한 정보이다. 본 논문에서는 자기조직화 맵기반의 고속 k-NN 탐색 알고리즘을 제안한다. 자기조직화 맵은 학습을 통하여 고차원 특징벡터를 2차원 공간에 맵핑함으로서 위상 특징맵을 생성한다. 위상 특징맵은 입력 데이터의 특징공간의 상호간의 유사성을 가지고 있으며, 각 노드는 노드벡터와 각 노드벡터에 가장 가까운 유사화상이 분류된다. 이러한 자기조직화 맴에 의한 유사화상 분류결과에 대한 k-NN 탐색을 구현하기 위한여, (1) 위상특징 맵에 대한 접근방법, (2) 고속탐색을 위한 pruning strategy의 적용을 실현하였다. 본 연구에서는 실험을 통하여 실제화상으로부터 추출한 색상 특징을 사용하여 제안한 알고리즘의 성능을 평가함으로써 유사화상 검색에 유효한 결과를 얻을 수 있었다.

  • PDF

낙동강 유역권 내 정수생태계의 동물플랑크톤 군집 동태 (Zooplankton Community Dynamic in Lentic Freshwater Ecosystems in the Nakdong River Basin)

  • 김성기;홍동균;강미아;이경락;이학영;주기재;최종윤
    • 한국환경생태학회지
    • /
    • 제29권3호
    • /
    • pp.410-420
    • /
    • 2015
  • 낙동강 수계의 20개 저수지 및 습지에서 환경요인에 대한 동물플랑크톤 군집의 영향을 평가하기 위해 계절별 조사를 수행하였으며 다양한 환경 요인에 대한 동물플랑크톤의 영향을 효과적으로 분석하기 위해 Self-Organizing Map(SOM) 분석을 이용하였다. 총 109종의 동물플랑크톤 종이 동정되었으며, 동물플랑크톤의 밀도와 종수는 계절에 따라 상이한 분포를 나타냈다. 특히, 가을은 다른 계절보다 동물플랑크톤의 높은 종수와 밀도를 기록하였다(98종, 603 ind. /L). 윤충류는 다른 환경요소보다 수온과 밀접하게 연관되었으며, 이는 계절에 따른 영향을 크게 받는 것으로 보인다. 지각류와 요각류는 전기전도도, Chl. a, 영양염류(TN, TP) 대해서 영향 받았으며, 이는 오염원 및 먹이원에 영향을 크게 받는 것으로 보인다. 그러나, 용존산소가 높은 정수역에서는 대부분 동물플랑크톤이 낮은 밀도를 보였다. 저수지 및 습지에서 출현하는 동물플랑크톤 군집은 수온이나 영양염류 등의 환경요인에 대해 주로 영향 받는 것으로 평가되었다. 결론적으로 저수지와 습지와 같은 정수역에서 출현하는 동물플랑크톤 군집의 조성 및 밀도는 환경요인과 밀접하게 연관되는 것으로 나타났으며, 환경요인의 변화는 동물플랑크톤의 계절성을 결정하는 중요한 요인인 것으로 평가되었다.

디지털 영상 객체의 불투명도 추정을 위한 SOM Matting (SOM Matting for Alpha Estimation of Object in a Digital Image)

  • 박현준;차의영
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.1981-1986
    • /
    • 2009
  • 본 논문은 인공신경망을 이용한 새로운 매팅 기법을 제안한다. 매팅이란 영상에서 객체의 불투명도를 추정하는 기술이다. 매팅 기법을 이용하면 객체를 자연스럽게 추출할 수 있다. 먼저 trimap을 이용하여 영상을 배경 영역, 전경 영역, 미지 영역으로 구분한다. 배경 영역과 전경 영역의 정보를 이용하여 미지 영역 화소의 불투명도를 추정한다. 제안하는 알고리즘은 배경 영역과 전경 영역의 정보를 SOM을 이용하여 학습하고 그 결과를 이용하여 미지 영역의 각 화소의 불투명도를 추정한다. 본 논문에서는 배경 영역과 전경 영역의 정보를 학습하는 방법에 따라서 전역적 SOM matting과 지역적 SOM matting으로 구별한다. 제안하는 알고리즘의 성능을 평가하기 위하여 영상에 적용해보았다. 이를 통해 제안하는 알고리즘이 객체를 영상에서 분리 가능함을 확인 할 수 있다.

SOM을 이용한 부호책의 고속 탐색 알고리듬 (A Fast Search Algorithm of Codebook Using the SOM)

  • 김진태;김동욱
    • 한국정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.102-109
    • /
    • 2001
  • 본 논문에서는 부호책의 계산 복잡도를 감소시키기 위하여 SOM의 처리 과정에서 발생되는 정보를 이용하는 고속 탐색 알고리듬을 제안한다. 부분 거리 탐색의 성능을 부호책의 재배열 영향을 입증하기 위해 3가지 경우의 배열에 의한 계산 시간 감축의 효과를 보인다.

  • PDF

Recognize Handwritten Urdu Script Using Kohenen Som Algorithm

  • Khan, Yunus;Nagar, Chetan
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.57-61
    • /
    • 2012
  • In this paper we use the Kohonen neural network based Self Organizing Map (SOM) algorithm for Urdu Character Recognition. Kohenen NN have more efficient in terms of performance as compare to other approaches. Classification is used to recognize hand written Urdu character. The number of possible unknown character is reducing by pre-classification with respect to subset of the total character set. So the proposed algorithm is attempt to group similar character. Members of pre-classified group are further analyzed using a statistical classifier for final recognition. A recognition rate of around 79.9% was achieved for the first choice and more than 98.5% for the top three choices. The result of this paper shows that the proposed Kohonen SOM algorithm yields promising output and feasible with other existing techniques.

효과적인 지문분류를 위한 SOM기반 OVA SVM의 결합 기법 (SOM-based Combination Method of OVA SVMs for Effective Fingerprint Classification)

  • 홍진혁;민준기;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.622-624
    • /
    • 2005
  • 대규모 지문인식 시스템에서 비교해야할 지문의 수를 줄이기 위해서 지문분류는 필수적인 과정이다. 최근 이진분류기인 지지 벡터 기계(Support Vector Machine: SVM)를 이용한 지문분류 기법이 많이 연구되고 있다. 본 논문에서는 다중부류 지문분류에 적합하도록 자기 구성 지도(Self-Organizing Map:SOM)를 이용하여 OVA(One-Vs-All) SVM들을 결합하는 지문분류 기법을 제안한다. SOM을 이용하여 OVA SVM들을 동적으로 결합하기 위한 결합 지도를 생성하여 지문분류 성능을 높인다. 지문분류에 있어 대표적인 NIST-4 지문 데이터베이스를 대상으로 Jain이 구축한 FingerCode 데이터베이스에 제안하는 방법을 적용하여 $1.8\%$의 거부율에서 $90.5\%$의 분류율을 획득하였으며, 기존의 결합 방법인 승자독식(Winner-takes-all)과 다수결 투표(Majority vote)보다 높은 성능을 확인하였다.

  • PDF

SOM를 이용한 초음파 영상에서의 충수염 추출 (Appendicitis Extraction of Ultrasonographic Images using SOM)

  • 배준호;양지현;박승익;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2014년도 춘계학술대회
    • /
    • pp.73-75
    • /
    • 2014
  • 본 논문에서는 원본 초음파 영상에서 스케일을 측정한 후, 영상의 확대 비율을 분석하여 충수염 객체의 크기에 대한 범위를 설정한다. 제안된 방법은 초음파 영상에서 ROI 영역을 추출한 후, 사다리꼴 타입의 소속 함수를 이용한 Fuzzy 이진화와 8방향 윤곽선 추적 기법을 적용하여 잡음을 제거한 후에 근막을 추출한다. 추출된 복부 근육의 근막 하단 경계선을 Cubic Spline 보간법을 이용하여 근막의 하단 영역을 추출한다. 초음파 영상의 근막을 기준으로 근막 영역을 제거한 후, SOM(Self-Organizing Map) 알고리즘을 이용하여 충수염의 후보 영역을 추출한다. 추출된 충수염의 후보 영역에 8방향 윤곽선 추적기법을 적용하여 충수염을 추출한다. 제안된 방법을 초음파 영상에 적용하여 실험한 결과, 기존의 충수염 추출 방법보다 충수염 영역이 비교적 정확히 추출되고 충수염의 크기를 측정할 수 있는 것을 실험을 통하여 확인하였다.

  • PDF

일반국도 도로특성분류를 위한 통계적 군집분석과 Kohonen Self-Organizing Maps의 비교연구 (A Comparative Study on Statistical Clustering Methods and Kohonen Self-Organizing Maps for Highway Characteristic Classification of National Highway)

  • 조준한;김성호
    • 대한토목학회논문집
    • /
    • 제29권3D호
    • /
    • pp.347-356
    • /
    • 2009
  • 본 연구는 기존의 도로기능분류 정의와 방법론을 벗어나 교통특성에 따른 도로분류 방법론인 도로특성분류를 기초로 분석을 수행하였다. 도로특성분류에 대한 일련의 과정 중에서 다양한 교통특성을 반영하는 설명변수를 기초로 요인점수를 산출하고, 동질한 도로구간을 그룹핑하는 군집화 분석과정과 적정 군집수 도출에 따른 군집결과비교에 본 연구는 초점을 맞추었다. 도로분류를 위해 병합적 계층 군집분석인 Ward법, 비계층적 군집분석인 K-means법, 자율신경 회로망을 이용한 K-SOM을 사용하여 비교분석하였다. 각 군집기법에 대한 결과를 토대로 비교분석한 결과, 군집 수 5 이하에서는 K-means법, 군집 수 14 이상에서는 Kohonen selforganizing maps가 가장 우수한 것으로 나타났으며, 군집수 5~9사이에서는 Ward법과 Kmeans법의 군집 성능이 불규칙한 패턴을 보임에 따라 세밀한 결과분석을 통해 우수성을 결정하는 것이 바람직할 것으로 분석되었다. 본 연구결과는 다양한 교통특성을 고려한 도로구간의 군집 속성을 분석하고 예측하는 분류화 작업에 중요한 기초적인 자료로 사용될 것으로 기대된다.

인천연안 낭장망 어획물 종조성의 계절변동 (Seasonal Variation in the Species Composition of Bag-net Catch from the Coastal Waters of Incheon, Korea)

  • 송미영;손명호;임양재;김종빈;김희용;연인자;황학진
    • 한국수산과학회지
    • /
    • 제41권4호
    • /
    • pp.272-281
    • /
    • 2008
  • Seasonal and annual variation in the species composition of bag-net catch in the coastal waters of Incheon, Korea were examined from April 2000 to November 2004. To analyze seasonal variation of the fisheries data, we implemented a self-organizing map(SOM), an unsupervised artificial neural network, with the catch amount of 97 species. Over 5 years, we caught 68 species of fish, 23 species of crustaceans and six species of cephalopods. The total number of fish species were gradually increased during the study period. The number of species was higher during the spring than the autumn. The SOM identified four groups of the sampling months based on seasonal changes in communities. In the spring, the dominant species were Leptochela gracilis and Pholis fangi; whereas, in the autumn, Engraulis japonicus and Portunus trituberculatus were dominant species in bag-net catch. Our results will be used to estimate seasonal and annual variation in fisheries resources of Korean coastal waters.

Detecting response patterns of zooplankton to environmental parameters in shallow freshwater wetlands: discovery of the role of macrophytes as microhabitat for epiphytic zooplankton

  • Choi, Jong-Yun;Kim, Seong-Ki;Jeng, Kwang-Seuk;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • 제38권2호
    • /
    • pp.133-143
    • /
    • 2015
  • Freshwater macrophytes improve the structural heterogeneity of microhabitats in water, often providing an important habitat for zooplankton. Some studies have focused on the overall influence of macrophytes on zooplankton, but the effects of macrophyte in relation to different habitat characteristics of zooplankton (e.g., epiphytic and pelagic) have not been intensively studied. We hypothesized that different habitat structures (i.e., macrophyte habitat) would strongly affect zooplankton distribution. We investigated zooplankton density and diversity, macrophyte characteristics (dry weight and species number), and environmental parameters in 40 shallow wetlands in South Korea. Patterns in the data were analyzed using a self-organizing map (SOM), which extracts information through competitive and adaptive properties. A total of 20 variables (11 environmental parameters and 9 zooplankton groups) were patterned onto the SOM. Based on a U-matrix, 3 clusters were identified from the model. Zooplankton assemblages were positively related to macrophyte characteristics (i.e., dry weight and species number). In particular, epiphytic species (i.e., epiphytic rotifers and cladocerans) exhibited a clear relationship with macrophyte characteristics, while large biomass and greater numbers of macrophyte species supported high zooplankton assemblages. Consequently, habitat heterogeneity in the macrophyte bed was recognized as an important factor to determine zooplankton distribution, particularly in epiphytic species. The results indicate that macrophytes are critical for heterogeneity in lentic freshwater ecosystems, and the inclusion of diverse plant species in wetland construction or restoration schemes is expected to generate ecologically healthy food webs.