• Title/Summary/Keyword: Selenium Yeast

Search Result 34, Processing Time 0.015 seconds

Protective Effect of DWP-04 Against Hepatotoxicity Induced by D-galactosamine (흰쥐에서 DWP-04가 D-galactosamine에 의해 유도된 간독성의 보호효과)

  • Lee Jung-Hee;Chi Sang Cheol;Kim Seok-Hwan;Shin Young-Ho;Choi Jongwon
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.461-467
    • /
    • 2005
  • This study was conducted to investigate the biological activity and hepatoprotective effect of DWP-04 [DDB : selenium yeast: glutathione (31.1 : 6.8 : 62.1(w/w/w)] in D-galactosamine (GaIN) intoxicated rats. The DWP-04 (50, 100 or 200 mg/kg) or its vehicle was orally administered everyday before the start of GaIN injection (400 mg/kg, ip) for two weeks and animal decapitated for 24 hrs after GaIN­injected. The activities of serum enzymes, markers of liver function, were increased in the GaIN group compared to normal group and significantly lowered in the DWP-04 pretreated group than in the GaIN group. Hepatic lipid peroxide level and activities of phase 1 enzymes were significantly higher than those of GaIN group compared to normal group and lower in the DWP-04 pretreated group than in the GaIN group, and phase II enzyme activities in liver were lower in the GaIN group than in the normal group and were increased in the DWP-04 pretreated group than in the GaIN group. Total hepatic glutathione content and glutathione biosynthesis enzymes were lower in the GaIN group than in the normal group and were increased in the DWP-04 pretreated group than in the GaIN group. Therefore, the current results indicated that DWP-04 administration alleviated the GaIN-induced adverse effect through enhancing the antioxidant enzyme activities.

Effects of High Dietary Levels of Selenium-Enriched Yeast and Sodium Selenite on Macro and Micro Mineral Metabolism in Grower-Finisher Swine

  • Kim, Y.Y.;Mahan, D.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.243-249
    • /
    • 2001
  • Thirty six barrows with an initial body weight of 28 kg were used to determine the effect of two dietary Se sources and a wide range of Se levels encompassing 0.3, 1.0, 3.0, 5.0, 7.0, and 10.0 mg/kg Se. The organic Se form was a Se-enriched yeast product, whereas the inorganic Se source was sodium selenite. The experiment was a $2{\times}6$ RCB design conducted in three replicates. Each barrow was placed in an individual metabolism crate and provided their dietary treatment and water on an ad libitum basis for a minimum 2 wk period, whereupon feed intake was adjusted to a constant intake within replicate at approximately 90% of intake for a 4 d adjustment period. Urine and feces were subsequently collected for a 7 d period and analyzed for Se and minerals. The results demonstrated that urinary Se was approximately 25% higher when pigs were fed sodium selenite (p<0.01), whereas fecal Se was lower by 25% (p<0.01). Se retention tended to be higher when organic Se was provided (p>0.15). Urinary Se increased as dietary Se level increased for both Se sources but increased more and at a high rate when sodium selenite was fed resulting in an interaction response (p<0.01). Fecal Se increased linearly as the dietary level of both Se sources increased, but the fecal Se from organic Se increased at a faster rate resulting in an interaction response (p<0.01). Se retention increased linearly (p<0.01) as dietary Se increased for both Se sources. The apparent digestibility of Se increased by Se level when pigs were fed sodium selenite, but not when the organic Se source was provided resulting in an interaction response (p<0.05). Retention of consumed Ca, Zn increased when pigs were fed organic Se (p<0.05) whereas P and Na retention were higher when the inorganic Se was provided. Mineral retention was not affected by dietary Se level except P. These results suggest that Se excretion by urine was the main route of excretion when pigs were fed sodium selenite but the fecal route when Se-enriched yeast was provided. The excretion of Fe, Zn, Mn, and Cu via urine and feces was not affected by high dietary Se level or dietary Se sources.

The Role of Immunostimulants in Monogastric Animal and Fish - Review -

  • Sohn, K.S.;Kim, M.K.;Kim, J.D.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1178-1187
    • /
    • 2000
  • Many immunostimulating substances have been developed to improve immunity of domestic animals, although their exact mode of action and effects are not clearly defined, and they are now widely used in feed industry. Bacterial lipopolysaccharides, called endotoxin, in particular may have a profound effect not only on the immune system but also on macrophages of the reticuloendothelial system. Glucans from a variety of yeast cell wall have been shown to stimulate both specific and non-specific immune responses and to increase growth performance in pigs. Recently, there has been great interest in the role of complex carbohydrates in disease prevention and treatment. Mannanoligosaccharide is a glucomannoprotein complex derived from the cell wall of yeast. Generally, it was also known that the deficiencies of some major vitamins (vitamin A, E and C) and minerals (chromium and selenium) lead to impaired immune system and, as a result, immune function is depressed and recovery delayed. On the other hand, many researchers suggested that one possible reason for the superior performance observed in pigs fed plasma protein may be because of the presence of biologically active plasma proteins (e.g., immunoglobulins) which are known to contribute to the health of the starter pig. And, immunoglobulins present in plasma protein have been implicated as contributing to the overall immunocompetence of the newborn pig. Other immunostimulants, lactoferrin and lysozyme, mainly found in milk and egg white, have been known as having bacteriocidal and bacteriolytic effect. When considering practical use of immunostimulants, the concept of using immunostimulants is new to many people and, in most cases, it is poorly understood how and why such compounds act, and how they should be used in practice. Therefore, in order to clarify the reason for discrepancies in results, special attention should be paid to the dose/response relationship of immunostimulants and the duration of the effect.

Preventive effect of a Schizandrin C derivative DDB-mixed preparation (DWP-04) against hepatotoxicity induced by Carbon Tetrachloride (사염화탄소로 유발된 간독성에 대한 오미자 Schizandrin C 유도체 DDB 복합물 DWP-04의 예방효과)

  • Lee, Jung-Hee;Chi, Sang-Cheol;Kim, Seok-Hwan;Shin, Young-Ho;Park, Hee-Juhn;Choi, Jong-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.1 s.140
    • /
    • pp.44-49
    • /
    • 2005
  • The protective effects of the DWP-04 [DDB : selenium yeast: glutathione {31.1 : 6.8 : 62.1 (%, w/w)} against hepatotoxicity by carbon tetrachloride $(CCl_4)$ were studied in rats. The rats were intraperitoneally injected with $CCl_4$ (50% in com oil) at initial dose of 1 ml/kg followed by 0.5 ml/kg 3 times during 1 week. The DWP-04 (50, 100 or 200 mg/kg) or its vehicle was administered everyday before the start of $CCl_4$ injection for two weeks. $CCl_4$ induced hepatocelluar degeneration and necrosis, which led to a great increase in serum aminotransferase, alkaline phosphatase activity and serum lipid levels. It was found by biochemical analysis that $CCl_4$ treatment remarkably increased thiobarbituric acid reactive substances and physphatidylcholine hydroperoxide in hepatic tissues and induced antioxidant enzymes such as catalase and superoxide dismutase (SOD). Liver and serum lipids were significantly lower in rats fed on DWP-04 than in rats induced by $CCl_4$ only-treatment. These results suggested that the DWP-04 could be a promising candidate for the protection of liver injury based on the preventive effects against lipid peroxidation and serum biochemical parameters.