• Title/Summary/Keyword: Selective inhibitor

Search Result 394, Processing Time 0.033 seconds

Mechanism of Growth Inhibition by BCH in HEp2 Human Head and Neck Squamous Cell Carcinoma (사람 두경부 편평세포암종 HEp2 세포에서 BCH에 의한 세포성장 억제기전)

  • Choi, Bong-Kyu;Jung, Kyu-Yong;Cho, Seon-Ho;Kim, Chun-Sung;Kim, Do-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.5
    • /
    • pp.555-560
    • /
    • 2008
  • Amino acid transporters are essential for the growth and proliferation in all living cells. Among the amino acid transporters, the system L amino acid transporters are the major nutrient transport system responsible for the $Na^+$-independent transport of neutral amino acids including several essential amino acids. The L-type amino acid transporter 1 (LAT1), an isoform of system L amino acid transporter, is highly expressed in cancer cells to support their continuous growth and proliferation. 2-Aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) is a model compound for the study of amino acid transporter as a system L selective inhibitor. We have examined the effect and mechanism of BCH on cell growth suppression in HEp2 human head and neck squamous cell carcinoma. The BCH inhibited the L-leucine transport in a concentration-dependent manner with a $IC_{50}$ value of $51.2{\pm}3.8{\mu}M$ in HEp2 cells. The growth of HEp2 cells was inhibited by BCH in the timeand concentration-dependent manners. The formation of DNA ladder was not observed with BCH treatment in the cells. Furthermore, the proteolytic processing of caspase-3 and caspase-7 in the cells were not detected by BCH treatment. These results suggest that the BCH inhibits the growth of HEp2 human head and neck squamous cell carcinoma through the intracellular depletion of neutral amino acids for cell growth without apoptotic processing.

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells (생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과)

  • Park, Chung Mu
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.

Astragaloside IV Prevents Obesity-Associated Hypertension by Improving Pro-Inflammatory Reaction and Leptin Resistance

  • Jiang, Ping;Ma, Dufang;Wang, Xue;Wang, Yongcheng;Bi, Yuxin;Yang, Jinlong;Wang, Xuebing;Li, Xiao
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.244-255
    • /
    • 2018
  • Low-grade pro-inflammatory state and leptin resistance are important underlying mechanisms that contribute to obesity-associated hypertension. We tested the hypothesis that Astragaloside IV (As IV), known to counteract obesity and hypertension, could prevent obesity-associated hypertension by inhibiting pro-inflammatory reaction and leptin resistance. High-fat diet (HFD) induced obese rats were randomly assigned to three groups: the HFD control group (HF con group), As IV group, and the As IV + ${\alpha}$-bungaratoxin (${\alpha}-BGT$) group (As IV+${\alpha}-BGT$ group). As IV ($20mg{\cdot}Kg^{-1}{\cdot}d^{-1}$) was administrated to rats for 6 weeks via daily oral gavage. Body weight and blood pressure were continuously measured, and NE levels in the plasma and renal cortex was evaluated to reflect the sympathetic activity. The expressions of leptin receptor (LepRb) mRNA, phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated phosphatidylinositol 3-kinase (p-PI3K), suppressor of cytokine signaling 3 (SOCS3) mRNA, and protein-tyrosine phosphatase 1B (PTP1B) mRNA, pro-opiomelanocortin (POMC) mRNA and neuropeptide Y (NPY) mRNA were measured by Western blot or qRT-PCR to evaluate the hypothalamic leptin sensitivity. Additionally, we measured the protein or mRNA levels of ${\alpha}7nAChR$, inhibitor of nuclear factor ${\kappa}B$ kinase subunit ${\beta}/nuclear$ factor ${\kappa}B$ ($IKK{\beta}/NF-KB$) and pro-inflammatory cytokines ($IL-1{\beta}$ and $TNF-{\alpha}$) in hypothalamus and adipose tissue to reflect the anti-inflammatory effects of As IV through upregulating expression of ${\alpha}7nAChR$. We found that As IV prevented body weight gain and adipose accumulation, and also improved metabolic disorders in HFD rats. Furthermore, As IV decreased BP and HR, as well as NE levels in blood and renal tissue. In the hypothalamus, As IV alleviated leptin resistance as evidenced by the increased p-STAT3, LepRb mRNA and POMC mRNA, and decreased p-PI3K, SOCS3 mRNA, and PTP1B mRNA. The effects of As IV on leptin sensitivity were related in part to the up-regulated ${\alpha}7nAchR$ and suppressed $IKK{\beta}/NF-KB$ signaling and pro-inflammatory cytokines in the hypothalamus and adipose tissue, since co-administration of ${\alpha}7nAChR$ selective antagonist ${\alpha}-BGT$ could weaken the improved effect of As IV on central leptin resistance. Our study suggested that As IV could efficiently prevent obesityassociated hypertension through inhibiting inflammatory reaction and improving leptin resistance; furthermore, these effects of As IV was partly related to the increased ${\alpha}7nAchR$ expression.

Effect of Diphtheria Toxin on the Phospholipase D activity and Free Fatty Acid Release in HepG2 Cells (HepG2 세포의 포스포리파제 D 활성과 자유 지방산 방출에 대한 디프테리아 독소의 영향)

  • Koh, Eun-Hie
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • The effect of diphtheria toxin on cell membrane lipids was studied by examining the phospholipase D (PLD) activity and free fatty acids (FFA) release in HepG2 cells. The diphtheria toxin effects on lipid alteration show apparently maximal at pH 5.1, stimulating PLD activity nearly 3.5 fold and enhancing FFA release approximately 5 fold over the control. These results indicate that the membrane is perturbed and its lipid component is rearranged during the diphtheria toxin translocation. Digitonin, a random membrane perturbing detergent, exhibit about four-fold higher perturbation effect over the diphtheria toxin at neutral pH. This observation suggests that the membrane perturbation induced by diphtheria toxin appears to be rather selective. To investigate the cause of the membrane perturbation, Cibacron blue, an inhibitor of membrane pore formation, and hemagglutinin, an influenza virus with fusion peptide, were tested for their effects on diphtheria toxin action. Cibacron blue decreased the diphtheria toxin effect by almost 50%, but the lipid alteration induced by hemagglutinin was similar to the diphtheria toxin effect. These observations imply that the membrane perturbation induced by diphtheria toxin may be caused by a combination of pore formation and insertion of hydrophobic peptide of toxin to the membrane as well. Additionally, we found that the diphtheria toxin increased the HepG2 cells permeability but the cells viability was maintained at high level at the same time. DNA fragmentation which is related to apoptosis was not induced by the toxin. Under these conditions, we could demonstrate that the lipid alteration of HepG2 cells was brought about by diphtheria toxin at acidic pH.

NMDA Receptor and NO Mediate ET-1-Induced Behavioral and Cardiovascular Effects in Periaqueductal Gray Matter of Rats

  • Ryu, Jung-Su;Shin, Chang-Yell;Yang, Sung-Jun;Lee, Tai-Sang;La, Hyun-O;Song, Hyun-Ju;Yom, Yoon-Ki;Huh, In-Hoi;Sohn, Uy-Dong
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.64-68
    • /
    • 2001
  • Endothelin-1 (ET-1 ), a novel and potent vasoconstrictor in blood vessel, is known to have some functions in the rat central nervous system (CNS), In order to investigate the central functions of ET-1 , ET-1 was administered to the periaqueductal gray area (PAC) of anesthetized rats to induce barrel rolling and increase the arterial blood pressure (ABP). ET-1 had a modulatory effect on central cardiovascular and behavioral control. The selective N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (3${u}m/ol/kg$, i.p.) blocked the ET-1 induced responses, and both the nitric oxide synthase (NOS) inhibitor L-NAME (N-nitro-L-arginine mIThyl-ester 1 nmol/rat) and the nitric oxide (NO) scavenger hemoglobin (15 nmol/rat) had similar effects in redtAcing the IT-1 (10 pmol/rat)-induced behavioral changes and ABP elevation. However, NO donor sodium nitroprusside (SNP 10${u}g$, 1${u}g/rat$) decreased the ET-1 induced ABP elevation, and recovered the ET-1 -induced barrel rolling effect that was reduced by MK-801. These results suggest that ET-1 might have neuromodulatory functions such as ABP elevation and barrel rolling induction in the PAG of the rats via the NMDA receptor and NO.

  • PDF

Cutaneous Adverse Reactions Induced by Gefitinib (Iressa) in Lung Cancer Patients (폐암 환자들에서 Gefitinib (Iressa)에 의한 피부 부작용)

  • Yun, Sook Jung;Lee, Jee Bum;Kim, Kyu Sik;Kim, Young Chul
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.2
    • /
    • pp.150-156
    • /
    • 2006
  • Background: Gefitinib (ZD 1839, Iressa) is a new anticancer agent; more specifically, it is a selective epidermal growth factor receptor tyrosine kinase inhibitor that is, widely used for various solid cancers, including lung cancer. Cutaneous adverse reactions induced by gefitinib have recently been reported; however, not much on this topic has been reported in the Korean literature. Method: We studied cutaneous adverse reactions of gefitinib in 23 patients who suffered with non-small cell lung cancer at Chonnam National University Hwasun Hospital from October 2004 to September 2005. Result: The patients ranged from 23-72 years old, and there were 17 patients with adenocarcinoma, 5 with squamous cell carcinoma and 1 with bronchioloalveolar carcinoma. The most common adverse reaction was acneiform eruptions in 15 patients (65.2%). This reaction appeared within 2 months after medication, and it didn't correlate with the therapeutic response and tumor type. Pruritus was the second most common reaction (39.1%), which was mild and generalized, especially around eyelid area. Xerosis (26.1%), exfoliation on palm and sole (21.7%), and paronychia (21.7%) followed. Hair breakage and intertrigo were rare adverse reactions. Conclusion: Various cutaneous adverse reactions were observed in patients with non-small cell lung carcinoma after gefitinib treatment. The skin complications could be alleviated with dermatologic consultations and treatments, skin complications could be alleviated.

Guinea pig cysteinyl leukotriene receptor 2 (gpCysLT2) mediates cell proliferation and intracellular calcium mobilization by LTC4 and LTD4

  • Ito, Yoshiyuki;Hirano, Minoru;Umemoto, Noriko;Zang, Liqing;Wang, Zhipeng;Oka, Takehiko;Shimada, Yasuhito;Nishimura, Yuhei;Kurokawa, Ichiro;Mizutani, Hitoshi;Tanaka, Toshio
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.139-145
    • /
    • 2008
  • We cloned and pharmacologically characterized the guinea pig cysteinyl leukotriene (CysLT) 2 receptor (gpCysLT2). gpCysLT2 consists of 317 amino acids with 75.3%, 75.2%, 73.3% identity to those of humans, mice and rats, respectively. The gpCysLT2 gene is highly expressed in the lung, moderately in eosinophils, skin, spleen, stomach, colon, and modestly in the small intestine. CysLTs accelerated the proliferation of gpCysLT2-expressing HEK293. Leukotriene C4 (LTC4) and Leukotriene D4 (LTD4) enhanced the cell proliferation higher than Bay-u9773, a CysLT2 selective partial agonist and a nonselective antagonist for CysLT receptors. Bay-u9773 did not antagonize the cell proliferation by LTC4 and LTD4. Despite the equipotency of the mitogenic effect among these chemicals, calcium mobilization (CM) levels were variable (LTC4 > LTD4 >> Bay-u9773), and Bay-u9773 antagonized the CM by LTC4. Moreover, the Gi/o inhibitor pertussis toxin perfectly inhibited agonist-induced cell proliferation. These results reveal that cell proliferation via CysLT2 signaling was mediated by Gi/o signaling but independent of calcium mobilization.

Expression and Role of the System L Amino Acid Transporter in FOB Human Osteoblast Cells (사람 골모세포 FOB에서 아미노산 수송계 L의 발현 및 역할)

  • Kim, Chang-Hyun;Park, Joo-Cheol;Kim, Do Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.9
    • /
    • pp.1367-1374
    • /
    • 2005
  • Amino acid transporters play an important role in supplying nutrition to normal and cancer cells for cell proliferation. Amino acid transport system L is a major nutrient transport system responsible for the $Na^+$-independent transport of neutral amino acids including several essential amino acids. The system L is divided into two major subgroups, the L-tyre amino acid transporter 1 (LAT1) and the L-type amino acid transporter 2 (LAT2). In the present study, we have examined the expression and functional characterization of system L amino acid transporters in FOB human osteoblast cells. RT-PCR and western blot analysis have revealed that the FOB cells expressed LAT1, LAT2 together with their associating protein 4F2hc. The uptakes of $[^{14}C]_L$-leucine by FOB cells are $Na^+$-independent and almost completely inhibited by system L amino acid transporter selective inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). These results suggest that the transport of neutral amino acids including several essential amino acids for cellular nutrition into the FOB human osteoblast cells is mediated by system L amino acid transporters.

Fluoxetine Modulates Corticostriatal Synaptic Transmission through Postsynaptic Mechanism

  • Cho, Hyeong-Seok;Choi, Se-Joon;Kim, Ki-Jung;Lee, Hyun-Ho;Cho, Young-Jin;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Fluoxetine, widely used for the treatment of depression, is known to be a selective serotonin reuptake inhibitor (SSRI), however, there are also reports that fluoxetine has direct effects on several receptors. Employing whole-cell patch clamp techniques in rat brain slice, we studied the effects of fluoxetine on corticostriatal synaptic transmission by measuring the change in spontaneous excitatory postsynaptic currents (sEPSC). Acute treatment of rat brain slice with fluoxetine ($10{\mu}M$) significantly decreased the amplitude of sEPSC ($8.1{\pm}3.3$%, n=7), but did not alter its frequency ($99.1{\pm}4.7$%, n=7). Serotonin ($10{\mu}M$) also significantly decreased the amplitude ($81.2{\pm}3.9$%, n=4) of sEPSC, but did not affect its frequency ($105.8{\pm}8.0$, n=4). The effect of fluoxetine was found to have the same trend as that of serotonin. We also found that the inhibitory effect of fluoxetine on sEPSC amplitude ($93.0{\pm}1.9$%, n=8) was significantly blocked, but not serotonin ($84.3{\pm}1.6$%, n=4), when the brain slice was incubated with p-chloroamphetamine ($10{\mu}M$), which depletes serotonin from the axon terminals and blocks its reuptake. These results suggest that fluoxetine inhibits corticostriatal synaptic transmission through postsynaptic, and that these effects are exerted through both serotonin dependent and independent mechanism.

Interaction of Forskolin with the Effect of $N^6-cyclopentyladenosine$ on Norepinephrine Release in Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리에 미치는 $N^6-cyclopentyladenosine$ 및 Forskolin의 영향)

  • Choi Bong-Kyu;Kim Do-Kyung;Son Yong;Yang Ue-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.225-231
    • /
    • 1997
  • As it has been reported that the depolarization-induced norepinephrine (NE) release is modulated by activation of presynaptic $A_1-adenosine$ heteroreceptor and various lines of evidence indicate the involvement of adenylate cyclase system in $A_1-adenosine$ post-receptor mechanism in hippocampus, it was attempted to delineate the role of adenylate cyclase system in the $A_1-receptor-mediated$ control of NE release in this study. Slices from rat hippocampus were equilibrated with $[^3H]-NE$ and the release of the labelled products was evoked by electrical stimulation.(3 Hz, $5Vcm^{-1}$, 2 ms, rectangular pulses). The influence of various agents on the evoked tritium-outflow was investigated. $N^6-Cyclopentyladenosine$ (CPA), a specific $A_1-adenosine$ receptor agonist, in concentrations Tanging from 0.1 to $10{\mu}M$ decreased the $[^3H]-NE$ release in a dose-dependent mauler without any change of basal rate of release. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, $2{\mu}M$), a selective $A_1-receptor$ antagonist, inhibited the CPA effect. The responses to N-ethylmaleimide $(3&10{\mu}M)$, a SH-alkylating agent of G-protein, were characterized by increments of the evoked NE-release and the CPA effects were completely abolished by NEM pretreatment. Forskolin, a specific adenylate cyclase activator, in concentrations ranging from 0.1 to $30{\mu}M$ increased the evoked and basal rate of NE release in a dose-dependent manner and the CPA effects were inhibited by forskolin pretreatment. Rolipram $(1&10{\mu}M)$, a phosphodiesterase inhibitor, did not affect the evoked NE release but reduced the CPA effect. And 8-bromo-cAMP $(100&300{\mu}M)$, a membrane permeable cAMP analogue inhibited the CPA effect significantly. These results suggest that the $A_1-adenosine$ heteroreceptor plays an important role in NE-release via nucleotide-binding protein $G_i$ in the rat hippocampus and that the adenylate cyclase system might be participated in this process.

  • PDF