• 제목/요약/키워드: Selective Mechanism

검색결과 444건 처리시간 0.02초

Regulation of Nicotinic Acetylcholine Receptor by Tyrosine Kinase in Autonomic Major Pelvic Ganglion Neurons

  • ;;;공인덕
    • 대한의생명과학회지
    • /
    • 제13권2호
    • /
    • pp.119-125
    • /
    • 2007
  • It is widely known that protein tyrosine kinases (PTKs) are involved in controlling many biological processes such as cell growth, differentiation, proliferation, survival and apoptosis. An $\alpha3\beta4$ subunit combination acts as a major functional acetylcholine receptor (nAChRs) in male rat major pelvic ganglion (MPG) neurons, and their activation induces fast inward currents and intracellular calcium increases. Recently it has been reported that the activity of acetylcholine receptors (AChRs) in some neurons can be negatively regulated by PTKs. However, the exact mechanism of regulation of nAChRs by PTKs is poorly understood. Therefore, we examined the potential role particular in nAChR by PTK using electrophysiology and calcium imaging in male rat MPG neurons. ACh induced inward currents and $(Ca^{2+})_i$ increases in MPG neurons, concomitantly. These responses were inhibited by more than 90% in $Na^+$- or $Ca^{2+}$- free solution. $\alpha$-conotoxin AuIB, a selective $\alpha3\beta4$ nAChR blocket, inhibited ACh-induced inward currents. Genistein (10 $\mu$M), a broad-spectrum tyrosine kinase inhibitor, markedly decreased ACh-induced currents and $Ca^{2+}$ transients, whereas 10 $\mu$M genistin, an inactive analogue, had little effect. Overall these data suggest that the activities of $\alpha3\beta4$ AChRs in MPG neurons are positively regulated by PTK. In conclusion, trosine kinase may be one of the key factors in the regulation of $\alpha3\beta4$ nAChRs in rat MPG neurons, which may play an important roles in the autonomic neuronal function such as synaptic transmission, autonomic reflex, and neuronal plasticity.

  • PDF

Clinical Pharmacology of Mycophenolic Acid as Immunosuppressant in Organ Transplaantation

  • Kang, Ju-Seop;Lee, Joo-Won;Jhee, Ok-Hwa;Om, Ae-Son;Lee, Min-Ho;Shaw, Leslie M.
    • Biomolecules & Therapeutics
    • /
    • 제13권2호
    • /
    • pp.65-77
    • /
    • 2005
  • Present article reviews about clinical pharmacology of mycophenolic acid (MPA), the active form of mycophenolate mofetil (MMF), as widely used component of immunosuppressive regimens in the organ transplantation field. MMF, used alone or concomitantly with cyclosporine or tacrolimus, has approved in reducing the incidence of acute rejection and has gained widespread use in solid organ such as kidney, heart and liver transplantation. The application of MPA and development of MMF has shown a considerable impact on immunosuppressive therapy for organ transplantation as a new immunosuppressive agent with different mechanism of action from other drugs after early 1990s. In particular aspect, use of MMF, a morpholinoethyl ester of MPA, represented a significant advance in the prevention of organ allograft rejection as well as allograft and patient survival. In considering MMF clinical data, it is important to note that there is a strong correlation between high MPA area under curve(AUC) values and a low probability of acute allograft rejection. Individual trials have shown that MMF is generally well tolerated and revealed that MMF decreased the relative risk of developing chronic allograft rejection compared with azathioprine. Recent clinical investigations suggested that improved effectiveness and tolerability will results from the incorporation of MPA therapeutic drug monitoring into routine clinical practice, providing effective MMF dose individualization in renal and heart transplant patients. Therefore, MMF has a selective immunosuppressive effect with minimal toxicity and has shown to be more effective that other agents as next step of immunosuppressive agents and regimens that deliver effective graft protection and immunosuppression along with a more favorable side effect.

천마가 산소자유기로 손상된 생쥐의 배양 척수 운동신경세포에 미치는 영향 (Effect of Rhizoma Gastrodiae on Cultured Spinal Motor Neurons Damaged by Oxygen Radicals)

  • 손일홍;이정헌;김상수;이강창;이영미;홍기연;문형배;서은아;한두석;신민교;송호준;박승택
    • 동의생리병리학회지
    • /
    • 제16권2호
    • /
    • pp.262-266
    • /
    • 2002
  • In order to elucidate the mechanism of cytotoxic effect of oxygen radicals on cultured mouse spinal motor neurons, the neurotoxicity induced by hydrogen peroxide(H₂O₂) was evaluated by MTT assay. The neuroprotective effect of Rhizoma Gastrodiae(RG) against H₂O₂-mediated neurotoxicity was also examined in these cultures by SRB assay. The results were as follows : The value of lethal concentration 50(LC50) of H₂O₂ was estimated at a concentration of 30 uM in these cultures. Cell viability of cultured mouse spinal motor neurons was remarkably decreased by H₂O₂-induced neurotoxicity in a dose- and time-dependent manner. RG was remarkably effective in blocking the neurotoxicity induced by H₂O₂ at a concentration of 120 μM as determined by SRB assay. From above the results, it is suggested that H₂O₂ induce neurotoxicity, and the selective herbal extracted RG was very effective in blocking H₂O₂-mediated neurotoxicity on cultured mouse spinal motor neurons.

PBT-6, a Novel PI3KC2γ Inhibitor in Rheumatoid Arthritis

  • Kim, Juyoung;Jung, Kyung Hee;Yoo, Jaeho;Park, Jung Hee;Yan, Hong Hua;Fang, Zhenghuan;Lim, Joo Han;Kwon, Seong-Ryul;Kim, Myung Ku;Park, Hyun-Ju;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • 제28권2호
    • /
    • pp.172-183
    • /
    • 2020
  • Phosphoinositide 3-kinase (PI3K) is considered as a promising therapeutic target for rheumatoid arthritis (RA) because of its involvement in inflammatory processes. However, limited studies have reported the involvement of PI3KC2γ in RA, and the underlying mechanism remains largely unknown. Therefore, we investigated the role of PI3KC2γ as a novel therapeutic target for RA and the effect of its selective inhibitor, PBT-6. In this study, we observed that PI3KC2γ was markedly increased in the synovial fluid and tissue as well as the PBMCs of patients with RA. PBT-6, a novel PI3KC2γ inhibitor, decreased the cell growth of TNF-mediated synovial fibroblasts and LPS-mediated macrophages. Furthermore, PBT-6 inhibited the PI3KC2γ expression and PI3K/AKT signaling pathway in both synovial fibroblasts and macrophages. In addition, PBT-6 suppressed macrophage migration via CCL2 and osteoclastogenesis. In CIA mice, it significantly inhibited the progression and development of RA by decreasing arthritis scores and paw swelling. Three-dimensional micro-computed tomography confirmed that PBT-6 enhanced the joint structures in CIA mice. Taken together, our findings suggest that PI3KC2γ is a therapeutic target for RA, and PBT-6 could be developed as a novel PI3KC2γ inhibitor to target inflammatory diseases including RA.

BmNPV Infection Enhances Ubiquitin-conjugating Enzyme E2 Expression in the Midgut of BmNPV Susceptible Silkworm Strain

  • Gao, Lu;Chen, Keping;Yao, Qin;Chen, Huiqing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제13권1호
    • /
    • pp.31-35
    • /
    • 2006
  • The ubiquitin conjugating enzyme 2 (E2) is core component of ubiquitin proteasome pathway (UPP) which represents a selective mechanism for intracellular proteolysis in eukaryotic cells. The E2 has been implicated in the intracellular transfer of ubiquitin to target protein. We show here the involvement of E2 in antiviral immune of Bombyx mori to Bombyx mori nuclear polyhedrosis virus (BmNPV). In this study, mRNA fluorescent differential display PCR (FDD-PCR) was performed with BmNPV highly resistant silkworm strain NB and susceptible silkworm strain 306. At 24 h post BmNPV infection, FDD-PCR with the arbitrary primer AP34 showed that one cDNA band was down-regulated in the midgut of resistant strain, but highly expressed in susceptible strain. The deduced amino acid sequence of this cDNA clone share 99% identity with the recently published B. mori ubiquitin conjugating enzyme E2 (Genbank NO: DQ311351). Fluorescent quantitative PCR corroborated down regulation of E2 in resistant strain. We there conclude that BmNPV infection evokes strong response of susceptible strain including activation of UPP. BmNPV may evolve escape mechanisms that manipulate the UPP in order to persist in the infected host. In addition, the identification of down-regulation of E2 in resistant strain, as well as structure data, are essential to understanding how UPP operates in silkworm antiviral immune to BmNPV disease.

제2형 당뇨병 환자에서 Dapagliflozin이 혈당과 심혈관계질환 위험인자에 미치는 영향 및 안전성 (Dapagliflozin's Effects on Glycemia and Cardiovascular Risk Factors and Incidence of Adverse Events in Patients with Type 2 Diabetes)

  • 이혜진;금민정;김재송;김수현;손은선
    • 한국임상약학회지
    • /
    • 제27권4호
    • /
    • pp.214-220
    • /
    • 2017
  • Background: Dapagliflozin is an oral selective inhibitor of sodium-glucose cotransporter 2(SGLT2), the kidney transporter chiefly responsible for glucose reabsorption from the glomerular filtrate. Because this mechanism does not require the action of insulin, dapagliflozin rarely causes hypoglycemia. Dapagliflozin may affect blood glucose control as well as blood pressure and the body weight which are one of the cardiovascular disease risk factors. However, dehydration and ketoacidosis are reported as the side effects of the dapagliflozin treatment and the safety issues have been occurred. The aim of this study is to analyze the effectiveness and adverse events of dapagliflozin in Korean patients. Methods: From December 2014 to August 2015, we retrospectively reviewed the electronic medical records of type 2 diabetes patients who were prescribed dapagliflozin at Severance Hospital. Results: A total of 202 Korean patients were enrolled in this study. The effectiveness in the reduction of blood glucose was statistically significant(p<0.001). Dapagliflozin decreased 0.74% of HbA1c after 24 weeks. Significantly more participants achieved the target HbA1c level(HbA1c<7%) after 24 weeks(n=42, 35.3%) than before taking dapagliflozin(n=21, 17.6%). Blood pressure decreased 5.7 mmHg systolic blood pressure(SBP), 1.9 mmHg diastolic blood pressure(DBP) after 24 weeks. More than one quarter of participants(n=35, 29.4%) experienced weight loss. Most common adverse event was genitourinary symptoms. Conclusion: In this study, the effectiveness of dapagliflozin in improving glycemic control, blood pressure control, and weight loss was statistically significant. However, elderly and female patients, who have higher incidence of adverse events, should use dapagliflozin cautiously.

Selonsertib Inhibits Liver Fibrosis via Downregulation of ASK1/MAPK Pathway of Hepatic Stellate Cells

  • Yoon, Young-Chan;Fang, Zhenghuan;Lee, Ji Eun;Park, Jung Hee;Ryu, Ji-Kan;Jung, Kyung Hee;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • 제28권6호
    • /
    • pp.527-536
    • /
    • 2020
  • Liver fibrosis constitutes a significant health problem worldwide due to its rapidly increasing prevalence and the absence of specific and effective treatments. Growing evidence suggests that apoptosis-signal regulating kinase 1 (ASK1) is activated in oxidative stress, which causes hepatic inflammation and apoptosis, leading to liver fibrogenesis through a mitogen-activated protein kinase (MAPK) downstream signals. In this study, we investigated whether selonsertib, a selective inhibitor of ASK1, shows therapeutic efficacy for liver fibrosis, and elucidated its mechanism of action in vivo and in vitro. As a result, selonsertib strongly suppressed the growth and proliferation of hepatic stellate cells (HSCs) and induced apoptosis by increasing Annexin V and TUNEL-positive cells. We also observed that selonsertib inhibited the ASK1/MAPK pathway, including p38 and c-Jun N-terminal kinase (JNK) in HSCs. Interestingly, dimethylnitrosamine (DMN)-induced liver fibrosis was significantly alleviated by selonsertib treatment in rats. Furthermore, selonsertib reduced collagen deposition and the expression of extracellular components such as α-smooth muscle actin (α-SMA), fibronectin, and collagen type I in vitro and in vivo. Taken together, selonsertib suppressed fibrotic response such as HSC proliferation and extracellular matrix components by blocking the ASK1/MAPK pathway. Therefore, we suggest that selonsertib may be an effective therapeutic drug for ameliorating liver fibrosis.

Ca2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain

  • Baik, Julia Young;Park, Eunice Yon June;So, Insuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.277-286
    • /
    • 2020
  • Polycystic kidney disease 2-like-1 (PKD2L1), also known as polycystin-L or TRPP3, is a non-selective cation channel that regulates intracellular calcium concentration. Calmodulin (CaM) is a calcium binding protein, consisting of N-lobe and C-lobe with two calcium binding EF-hands in each lobe. In previous study, we confirmed that CaM is associated with desensitization of PKD2L1 and that CaM N-lobe and PKD2L1 EF-hand specifically are involved. However, the CaM-binding domain (CaMBD) and its inhibitory mechanism of PKD2L1 have not been identified. In order to identify CaM-binding anchor residue of PKD2L1, single mutants of putative CaMBD and EF-hand deletion mutants were generated. The current changes of the mutants were recorded with whole-cell patch clamp. The calmidazolium (CMZ), a calmodulin inhibitor, was used under different concentrations of intracellular. Among the mutants that showed similar or higher basal currents with that of the PKD2L1 wild type, L593A showed little change in current induced by CMZ. Co-expression of L593A with CaM attenuated the inhibitory effect of PKD2L1 by CaM. In the previous study it was inferred that CaM C-lobe inhibits channels by binding to PKD2L1 at 16 nM calcium concentration and CaM N-lobe at 100 nM. Based on the results at 16 nM calcium concentration condition, this study suggests that CaM C-lobe binds to Leu-593, which can be a CaM C-lobe anchor residue, to regulate channel activity. Taken together, our results provide a model for the regulation of PKD2L1 channel activity by CaM.

Antibacterial Effect of the Surface-Modified Biomedical Polyurethane against Staphylococcus aureus and Staphylococcus epidermidis

  • Jeon, Sung-Min;Kim, Hyun-Jung;Lee, Kyu-Back;Kim, Jong-Won;Kim, Mal-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.259-265
    • /
    • 2001
  • Staphylococal infection still remains to be one of the most serious infections, having various complications in the clinical use of indwelling polymeric medical devices. However, there are a few promising systems showing a high antibacterial effect without causing any demage of polymer backbone under biological environments such as blood or body fluid. In order to resolve this problem, we have designed a new antibiotic releasing system via a hydrolysis mechanism. The surface of biomedical polyurethane (PU) was modified by using 1,6-diisocyanatohexane (HMDI) to immobilize the rifampicon. Also, the immobilized rifampicin was designed to be released by a selective cleavage of the unstable carbamate linkage that exists on the rifampicin-immobilized polyurethane (PHR). The immobilization of rifampicin on the surface of polyurethane was confirmed by the disappearance of the characteristics IR absorbance peak of the isocyanate (-NCO) group at $2,267\;cm^{-1}$. The PHR showed a continuous rifampicin release profile under an aqueous environment of 10 mM of PBS (phosphate-buffered saline) for ove 6 days. The rifampicin molecules, which are released from PHR under an optimal bacterial infection environment, had a higher antibacterial activity against both S. aureus and S. epidermidis than rifampicin-incorporated polyurethane (RIP). In addition, the PHR maintained a stable antibacterial effect under a blood-mimic aqueous environment such as bovine calf serum.

  • PDF

Inhibition of Cell-Cycle Progression in Human Promyelocytic Leukemia HL-60 Cells by MCS-C2, Novel Cyclin-Dependent Kinase Inhibitor

  • Kim, Min-Kyoung;Cho, Youl-Hee;Kim, Jung-Mogg;Chun, Moon-Woo;Lee, Seung-Ki;Lim, Yoong-Ho;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.607-612
    • /
    • 2003
  • To elucidate the action mechanism of MCS-C2, a novel analogue of toyocamycin and sangivamycin, its effect on the expression of cell cycle-related proteins in the human myelocytic leukemia cell line HL-60 was examined using Western blotting and a flow cytometric analysis. MCS-C2, a selective inhibitor of cyclin-dependent kinases, was found to inhibit cell growth in a time- and dose-dependent manner, and inhibits cell cycle progression by inducing the arrest at G1 and G2/M phases, in HL-60 cells. The flow cytometric analysis revealed an appreciable arrest of cells in the G2/M phase of the cell cycle after treatment with MCS-C2. The HL-60 cell population increased gradually from 13% at 0 h, to 28% at 12 h in the G2/M phase, after exposure to $2{\;}\mu\textrm{M}$ MCS-C2. Furthermore, Western blot analysis demonstrated that MCS-C2 induced the cell cycle arrest at G1 phase through the inhibition of pRb phosphorylation. Hypophosphorylated pRb accumulated after treatment with $5{\;}\mu\textrm{M}$ MCS-C2 for 12 h, whereas, the level of hyperphosphorylated pRb was reduced. Thus, treatment of the cell with MCS-C2 suppressed the hyperphosphorylated form of pRb with a commensurate increase in the hypophosphorylated form.