• 제목/요약/키워드: Selective Laser Melting

검색결과 69건 처리시간 0.025초

Selective Laser Melting을 이용한 코발트-크롬 가철성 국소의치의 수복 증례 (Cr-Co removable partial denture treatment fabricated by selective laser melting: a case report)

  • 임지훈;신수연
    • 구강회복응용과학지
    • /
    • 제37권1호
    • /
    • pp.39-47
    • /
    • 2021
  • 의치의 금속구조물을 selective laser melting을 통하여 제작하는 경우 기존의 제작 방식에 비해 여러 기공 과정이 생략되어 시간이 절약되고 간편해진다. 또한 균질한 밀도의 금속구조물을 얻을 수 있어 우수한 기계적 성질, 특히 피로 파절에 대한 높은 저항성을 기대할 수 있다. 본 증례에서는 부분 무치악 환자에서 기존의 방식으로 최종인상을 채득하여 주모형을 제작하였고 이를 스캔하여 데이터화 하였다. 스캔 데이터 상에서 금속구조물을 디자인한 뒤 selective laser melting 방식으로 가철성 국소의치를 제작하였으며 기능적 및 심미적으로 만족스러운 결과를 보였기에 이를 보고하는 바이다.

Selective Laser Melting (SLM) 방식 3D Printing으로 제조한 스테인레스 316L 기계적 물성 분석 (Mechanical Properties of 316L manufactured by Selective Laser Melting (SLM) 3D printing)

  • 박순홍;장진영;노용오;배병현;이병호;어두림;조중욱
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.872-876
    • /
    • 2017
  • 금속 소재부품의 제조 형태가 복잡해지고 소비자의 요구가 다양함에 따라 금속 3D 프린팅 연구가 활발히 진행되고 있다. 본 연구에서는 우주 발사체의 엔진 연소 노즐 부품에 적용 가능한 스테인레스 316L계 금속을 3D 프린팅 방식으로 제조하고 이에 대한 기계적, 화학적 특성 상관 연구를 진행하였다. 금속 3D 프린팅 기술은 레이저원을 이용하여 분말을 급속 용융과 응고를 반복됨에 따라 기존의 주조 응고와는 다른 미세 조직 형태를 나타내고, 이에 따라 기계적 물성이 변화함을 관찰하였다. 특히 개재물의 존재에 따라 기계적 특성이 변화하고 공정 조건의 변화에 따라 기공의 형태 및 위치등이 변화하는 것을 확인하였다.

  • PDF

선택적 레이저 용융 공정시 용융 거동에 대한 공정 분석 (Process Analysis of Melting Behaviors in Selective Laser Melting Process)

  • 성민영;주병돈;김수희;문영훈
    • 소성∙가공
    • /
    • 제19권8호
    • /
    • pp.517-522
    • /
    • 2010
  • Selective laser melting (SLM) is emerged as a new manufacturing technique to directly fabricate precise parts using metallic materials. The final characteristics of a component fabricated through the SLM process are strongly dependent upon various parameters such as laser power, scan rate and pulse duration, etc. This paper, therefore, focuses on the dimensional characteristics of melted $20{\mu}m$ Fe-Cr-Ni powder by fiber laser for the selective laser melting process. With energy density decrease, the height and depth were decreased. Although the conditions are of the same energy density, the shape is different by laser power and scan rate. The shapes at various laser parameters were divided into 3 groups based on depth over height. The smooth regular shape is obtained under the conditions of $50{\mu}m$ of powder height and $15-20{\mu}s$ of pulse duration. And the laser power influenced the variation of shape more significantly than the scan rate.

금속분말의 레이저 공정 기술 (Laser Processing Technology using Metal Powders)

  • 장정환;문영훈
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.191-200
    • /
    • 2012
  • The purpose of this paper is to review the state of laser processing technology using metal powders. In recent years, a series of research and development efforts have been undertaken worldwide to develop laser processing technologies to fabricate metal-based parts. Layered manufacturing by the laser melting process is gaining ground for use in manufacturing rapid prototypes (RP), tools (RT) and functional end products. Selective laser sintering / melting (SLS/SLM) is one of the most rapidly growing rapid prototyping techniques. This is mainly due to the processes's suitability for almost any materials, including polymers, metals, ceramics and many types of composites. The interaction between the laser beam and the powder material used in the laser melting process is one of the dominant phenomena defining feasibility and quality. In the case of SLS, the powder is not fully melted during laser scanning, therefore the SLS-processed parts are not fully dense and have relatively low strength. To overcome this disadvantage, SLM and laser cladding (LC) processes have been used to enable full melting of the powder. Further studies on the laser processing technology will be continued due to the many potential applications that the technology offers.

저융점 금속분말 재료의 레이저 예열 선택적 용침 (Laser-assisted Selective Infiltration of tow Melting-point Metal Powders)

  • H. Sohn;Lee, J. H.;J. Suh;D. Y. Yang
    • 한국레이저가공학회지
    • /
    • 제7권1호
    • /
    • pp.37-47
    • /
    • 2004
  • Laser-assisted selective infiltration is a new method of building metal layers to make metal parts layer by layer, in which superheated microscopic metal droplets are infiltrated into a laser-preheated layer of microscopic metal powders. In this work, the selective infiltration of a low melting-point metal, Sn-37Pb wt%, was conducted to investigate the effects of such dominant parameters as superheating temperature, Nd:YAG laser power for preheating, substrate temperature, etc. The optimal conditions for successful selective infiltration of a single layer of microscopic metal powder were experimentally obtained

  • PDF

치과 SLM용 Ni-Cr 금속분말 특성 관찰 (Production of Ni-Cr Metal Powder by Selective Laser Melting for Dentistry to Observation of Characteristics)

  • 홍민호
    • 대한치과기공학회지
    • /
    • 제37권1호
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: The selective laser melting (SLM) process for dentistry, which is one of the additive manufacturing technologies (AM) allows for rapid production of a three-dimensional model with complex shape by directly melting metal powder. This process generates detailed items of a three-dimensional model shape through consolidation of a thin powder layer by utilizing both selective melting and laser beam simultaneously. In regard to SLM process, Fe-base powder, Ti-6AI-4V powder, AI-base powder, etc. have been researched. It is believed that the aforementioned technologies will be widely utilized in manufacturing metal parts using metal powder of raw material. This study chose Ni-Cr-Mo metal powder in order to manufacture metal powder materials that would be used in the selective laser melting for dentistry. Methods: This study manufactured metal powder using mechanical alloying technique (MA) among those metal powder manufacturing techniques. Moreover, this study aimed to utilize the metal powder manufactured after observing the characteristics of powder as preliminary data of Ni-Cr-Mo metal powder. This study could obtain the following conclusions within the experimental limitations. Results: As a result of mechanically alloying Ni-Cr-Mo powder over time, its mean particle size was $66.93{\mu}m$ $54.4{\mu}m$ and $45.39{\mu}m$ at 10h, 20h and 30h, respectively. The gtain form of metal powder by mechanical alloying technique was a sponge-like shape of irregular plate; however, the gtain form manufactured by high-pressure water aromization process had the following three types: globular type, chain type and oval type. Conclusion: This study found $37.65{\mu}m$ as the mean particle size of Ni-Cr-Mo metal powder, which was manufactured using water atomization technique under the following conditions: water atomization flux of 300 liter/min, hydraulic pressure of $400kgf/cm^2$ and injection angle of $45^{\circ}$. This study confirmed that the grain form of powder (solid particle form) would vary depending on the manufacturing process.

Fe-Ni-Cr 코팅층 형성을 위한 SLS 공정변수의 최적화 (Optimization of selective laser sintering process parameter for Fe-Ni-Cr coating fabrication)

  • 주병돈;장정환;임홍섭;손영명;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2009
  • Selective laser sintering(SLS), a kind of rapid prototyping technology, can provide a process to form many types of coatings. Coated layers by selective laser melting are highly influenced by substrate, powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore an attempt to fabricate Fe-Ni-Cr coating on AISI H13 tool steel has been performed by selective laser sintering. In this study, Fe-Ni-Cr coating was produced by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with Ar. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of coating layer was improved with fill spacing optimization or layer thickness decrease.

  • PDF

Ti-6Al-4V 합금에서 상 변화를 고려한 Selective Laser Melting 프로세스 연구 (A Study on Selective Laser Melting Process Considering Phase Transformation for Ti-6Al-4V)

  • 송성일;박주헌;진병주;이경돈
    • 한국주조공학회지
    • /
    • 제39권6호
    • /
    • pp.110-115
    • /
    • 2019
  • Recently, various studies have been conducted on additive manufacturing technology developed using metal materials. In this study, a numerical analysis was introduced to analyze the effects of the thermal deformation and residual stress which arise during the SLM (selective laser melting) manufacturing process. A phase-transformation mechanism is implemented with the use of the Ti-6Al-4V material, in which a solid-state phase transformation (SSPT) can be induced during a numerical analysis. In this case, the phase of the Ti-6Al-4V material changes from a powder to a solid state and then to the Martensite phase in sequence during heating and cooling steps. The numerical analysis during the SLM process was verified by comparing the results of tensile tests with those from the numerical analysis based on the SSPT material properties.

도재용 코발트-크롬 금속관의 변연적합도 비교 (Comparison of the Marginal Fitness of Ceramic Co-Cr Metal Crown)

  • 전병욱;김부섭
    • 대한치과기공학회지
    • /
    • 제37권2호
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: In this study, the marginal fitness of ceramic Co-Cr metal crown made by precision casting, milling, and selective laser melting method were compared. Methods: The ceramic Co-Cr metal crown manufactured by precision casting used the lost wax(LC specimen) method. The abutment were scanned and then made by milling(CM specimen), selective laser melting(CS specimen) method. The specimen were cut bucco-lingual and mesio-distal, and absolute marginal discrepancy and marginal gap were measured using a digital microscope. The surface roughness of the crown was also observed. Results: On the bucco-lingual axial, absolute marginal discrepancy was the LC specimen $31.72({\pm}4.58){\mu}m$, the CM specimen $78.29({\pm}3.28){\mu}m$ and the CS specimen $143.13({\pm}3.83){\mu}m$, respectively. On the bucco-lingual axial, marginal gap was the LC specimen $22.70({\pm}1.46){\mu}m$, the CM specimen $22.70({\pm}1.49){\mu}m$ and CS specimen $99.60({\pm}1.57){\mu}m$, respectively. Conclusion: For ceramic Co-Cr metal crowns, LC specimen was superior for absolute marginal discrepancy and marginal gap. The surface of metal crowns by selective laser melting were the roughest.

Selective laser melting 방식으로 제작된 Inconel 718 합금의 수소취성에 미치는 응고셀 조직의 영향에 관한 연구 (A Study on the Effect of Solidification Substructure on the Hydrogen Embrittlement of Inconel 718 Fabricated by Selective Laser Melting)

  • 이동현
    • 열처리공학회지
    • /
    • 제35권4호
    • /
    • pp.203-210
    • /
    • 2022
  • In this study, hydrogen embrittlement in Inconel 718 fabricated by selective laser melting (SLM) was investigated. To focus on the effect of the SLM-induced solidification substructure, hydrogen embrittlement behavior of SLM as-built (SLM-AB) sample and that of conventionally produced (Con-S) sample were systematically compared. The detailed microstructural characterization showed that the SLM-AB sample exhibited a solidification substructure including a high density of dislocations and Laves phase, while the Con-S sample showed completely recrystallized grains without any substructure. Although the intrinsic strength in the SLM-AB sample was higher than the Con-S sample, the resistance to hydrogen embrittlement was higher in the SLM-AB sample. Nevertheless, a statistical analysis of the hydrogen-assisted cracks (HACs) revealed that the predominant HAC type of SLM-AB and Con-S samples was similar, i.e., intergranular HAC. The difference in the resistance to hydrogen embrittlement between the SLM-AB and Con-S samples were discussed in terms of the relation between the microstructural feature and its effect on hydrogen accumulation.