• Title/Summary/Keyword: Selective Encryption

Search Result 45, Processing Time 0.025 seconds

Selective Encryption Scheme Based on Region of Interest for Medical Images (의료 영상을 위한 관심영역 기반 선택적 암호 기법)

  • Lee, Won-Young;Ou, Yang;Rhee, Kyung-Hyune
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.588-596
    • /
    • 2008
  • For the patients' privacy, secure access control of medical images is essentially necessary. In this paper, two types of Region of Interest (ROI)-based selective encryption schemes are proposed, which concentrate on the security of crucial parts in medical images. The first scheme randomly inverts the most significant bits of ROI coefficients in several high frequency subbands in the transform domain, which only incurs little loss on compression efficiency. The second scheme employs a symmetric key encryption to encrypt selectively the ROI data in the final code-stream, which provides sufficient confidentiality. Both of two schemes are backward compatible so as to ensure a standard bitstream compliant decoder so the encrypted images can be reconstructed without any crash.

  • PDF

A Study of Selective Encryption for Images using Tree Structures (트리구조를 이용한 이미지의 선택적 암호화에 관한 연구)

  • Han, Myung-Mook;Kim, Geum-Sil
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.219-228
    • /
    • 2009
  • The increased popularity of multimedia applications places a great demand on efficient data storage and transmission techniques. Some methods have been proposed to combine compression and encryption together to reduce the overall processing time, but they are either insecure or intensive computationally. specially, they are unsuitable to wireless communication of mobile device. We propose a novel solution called partial encryption, We introduce quadtree and zerotree wavelet image compression in this paper, it reduces computation for date transmission in mobile device, and does not reduce the compression rate. In conclusion, the proposed partial encryption schemes are fast, secure, and do not reduce the compression performance of underlying compression algorithm.

  • PDF

Encryption of MPEG using Error Propagation by a Receiver (수신단에서 에러 전파 특성을 이용한 MPEG 암호화)

  • Jeong, Seo-Hyun;Lee, Sung-Ju;Chung, Young-Wha;Kim, Sang-Chun;Min, Byoung-Ki
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.183-188
    • /
    • 2011
  • According to increased multimedia data(i.e., MPEG video stream) in mobile application, protecting data becomes an important problem in the multimedia data delivery. SECMPEG is a selective encryption approach for protecting multimedia data. However, the computational overhead of SECMPEG's security level 3 is quite large because it encrypts the whole I-frames whose size is relatively larger than P/B-frames. Therefore, we need to analyze the characteristics of MPEG2 standard and derive an effective encryption of the I-frames. In this paper, we propose a slice-level, selective encryption approach by using the error-propagation characteristics of I-frames by a receiver. Our experimental results show that the proposed approach can reduce the execution time of SECMPEG's security level 3 by a factor of 30 without degradation of the security.

Hierarchical Identity-Based Encryption with Constant-Size Private Keys

  • Zhang, Leyou;Wu, Qing;Hu, Yupu
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.142-145
    • /
    • 2012
  • The main challenge at present in constructing hierarchical identity-based encryption (HIBE) is to solve the trade-off between private-key size and ciphertext size. At least one private-key size or ciphertext size in the existing schemes must rely on the hierarchy depth. In this letter, a new hierarchical computing technique is introduced to HIBE. Unlike others, the proposed scheme, which consists of only two group elements, achieves constant-size private keys. In addition, the ciphertext consists of just three group elements, regardless of the hierarchy depth. To the best of our knowledge, it is the first efficient scheme where both ciphertexts and private keys achieve O(1)-size, which is the best trade-off between private-key size and ciphertext size at present. We also give the security proof in the selective-identity model.

Encryption Algorithm using Polyline Simplification for GIS Vector Map

  • Bang, N.V.;Lee, Suk-Hwan;Moon, Kwang-Seok;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1453-1459
    • /
    • 2016
  • Recently, vector map has developed, used in many domains, and in most cases vector map data contains confidential information which must be kept away from unauthorized users. Moreover, the manufacturing process of a vector map is complex and the maintenance of a digital map requires substantial monetary and human resources. This paper presents the selective encryption scheme based on polyline simplification methods for GIS vector map data protection to store, transmit or distribute to authorized users. Main advantages of our algorithm are random vertices and transformation processes but it still meets requirements of security by random processes, and this algorithm can be implement to many types of vector map formats.

Verifiable Outsourced Ciphertext-Policy Attribute-Based Encryption for Mobile Cloud Computing

  • Zhao, Zhiyuan;Wang, Jianhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3254-3272
    • /
    • 2017
  • With the development of wireless access technologies and the popularity of mobile intelligent terminals, cloud computing is expected to expand to mobile environments. Attribute-based encryption, widely applied in cloud computing, incurs massive computational cost during the encryption and decryption phases. The computational cost grows with the complexity of the access policy. This disadvantage becomes more serious for mobile devices because they have limited resources. To address this problem, we present an efficient verifiable outsourced scheme based on the bilinear group of prime order. The scheme is called the verifiable outsourced computation ciphertext-policy attribute-based encryption scheme (VOC-CP-ABE), and it provides a way to outsource intensive computing tasks during encryption and decryption phases to CSP without revealing the private information and leaves only marginal computation to the user. At the same time, the outsourced computation can be verified by two hash functions. Then, the formal security proofs of its (selective) CPA security and verifiability are provided. Finally, we discuss the performance of the proposed scheme with comparisons to several related works.

A LSB-based Efficient Selective Encryption of Fingerprint Images for Embedded Processors (임베디드 프로세서에 적합한 LSB 기반 지문영상의 효율적인 부분 암호화 방법)

  • Moon, Dae-Sung;Chung, Yong-Wha;Pan, Sung-Bum;Moon, Ki-Young;Kim, Ju-Man
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.10
    • /
    • pp.1304-1313
    • /
    • 2006
  • Biometric-based authentication can provide strong security guarantee about the identity of users. However, security of biometric data is particularly important as the compromise of the data will be permanent. In this paper, we propose a secure and efficient protocol to transmit fingerprint images from a fingerprint sensor to a client by exploiting characteristics of fingerprint images. Because the fingerprint sensor is computationally limited, however, such encryption algorithm may not be applied to the full fingerprint images in real-time. To reduce the computational workload on the resource-constrained sensor, we apply the encryption algorithm to a specific bitplane of each pixel of the fingerprint image. We use the LSB as specific bitplane instead of MSB used to encrypt general multimedia contents because simple attacks can reveal the fingerprint ridge information even from the MSB-based encryption. Based on the experimental results, our proposed algorithm can reduce the execution time of the full encryption by a factor of six and guarantee both the integrity and the confidentiality without any leakage of the ridge information.

  • PDF

An Efficient Packet Encryption Scheme Based on Security Requirement Level (보안 요구 수준에 근거한 효율적인 패킷 암호화 기법)

  • 노지명;양정민
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.153-164
    • /
    • 2004
  • Under a large-scale client-server service environment, e.g., online games, encrypting data for acquiring information security often causes overload to the server and hence degradation of the service itself. Therefore, for reducing encryption payload, it is necessary to use adequately an efficient encryption scheme with respect to the security requirements of transmission data. In this paper, we propose a packet encryption scheme using multiple cryptosystems to realize such capability, which assigns a different cryptosystem according to the security requirements level. The proposed encryption scheme is applicable to internet services with heavy traffic ratios in which different kinds of data packets are incessantly transmitted between clients and servers. To show its effectiveness and superiority, the performance of the proposed encryption scheme is verified by experiments.

Experimental Analysis of the AES Encryption Algorithm (AES 암호화 알고리즘의 실험적 분석)

  • Oh, Ju-Young;Suh, Jin-Hyung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.2
    • /
    • pp.58-63
    • /
    • 2010
  • Cryptography is primarily a computationally intensive process. In this paper we expand AES scheme for analysis of computation time with four criteria, first is the compression of plain data, second is the variable size of block, third is the selectable round, fourth is the selective function of whole routine. We have tested our encryption scheme by c++ using MinGW GCC. Through extensive experimentations of our scheme we found that the optimal block size.

  • PDF

An Effective Encryption Algorithm for 3D Printing Model Based on Discrete Cosine Transform

  • Pham, Ngoc-Giao;Moon, Kwnag-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2018
  • In this paper, we present an effective encryption algorithm for 3D printing models in the frequency domain of discrete cosine transform to prevent illegal copying, access in the secured storage and transmission. Facet data of 3D printing model is extracted to construct a three by three matrix that is then transformed to the frequency domain of discrete cosine transform. The proposed algorithm is based on encrypting the DC coefficients of matrixes of facets in the frequency domain of discrete cosine transform in order to generate the encrypted 3D printing model. Experimental results verified that the proposed algorithm is very effective for 3D printing models. The entire 3D printing model is altered after the encryption process. The proposed algorithm is provide a better method and more security than previous methods.