• Title/Summary/Keyword: Selection signature

Search Result 56, Processing Time 0.025 seconds

Chip Equalizer using Tap Selection Algorithm for Satellite Digital Multimedia Broadcasting (DMB) (위성 DMB용 탭 선택적 칩 등화 수신기)

  • Lee Sang-Joon;Lee Goon-Seop;Lee Dong-Hahk;Yu Jae-Hwang;Seo Jong-Soo;Byeon Jeong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.11 no.3 s.32
    • /
    • pp.302-310
    • /
    • 2006
  • ITU-R B.O. 1130-4 Digital System E adopted for Korean satellite DMB service is a multimedia broadcasting system based on DS-CDM-QPSK technique which broadcasts audio and video contents via the satellite or terrestrial gap-filler. However, Digital System E can not provide full loading services because the multi-channel interference (MCI) is increased due to the loss of orthogonality between signature waveforms in multipath fading channels. In this paper a chip equalizer using tap selection algorithm that enhances the receiving performance is proposed and compared to the conventional rake receiver for the satellite DMB system.

Biocomputational Characterization and Evolutionary Analysis of Bubaline Dicer1 Enzyme

  • Singh, Jasdeep;Mukhopadhyay, Chandra Sekhar;Arora, Jaspreet Singh;Kaur, Simarjeet
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.876-887
    • /
    • 2015
  • Dicer, an ribonuclease type III type endonuclease, is the key enzyme involved in biogenesis of microRNAs (miRNAs) and small interfering RNAs (siRNAs), and thus plays a critical role in RNA interference through post transcriptional regulation of gene expression. This enzyme has not been well studied in the Indian water buffalo, an important species known for disease resistance and high milk production. In this study, the primary coding sequence (5,778 bp) of bubaline dicer (GenBank: AB969677.1) was determined and the bubaline Dicer1 biocomputationally characterized to determine the phylogenetic signature among higher eukaryotes. The evolutionary tree revealed that all the transcript variants of Dicer1 belonging to a specific species were within the same node and the sequences belonging to primates, rodents and lagomorphs, avians and reptiles formed independent clusters. The bubaline dicer1 is closely related to that of cattle and other ruminants and significantly divergent from dicer of lower species such as tapeworm, sea urchin and fruit fly. Evolutionary divergence analysis conducted using MEGA6 software indicated that dicer has undergone purifying selection over the time. Seventeen divergent sequences, representing each of the families/taxa were selected to study the specific regions of positive vis-$\grave{a}$-vis negative selection using different models like single likelihood ancestor counting, fixed effects likelihood, and random effects likelihood of Datamonkey server. Comparative analysis of the domain structure revealed that Dicer1 is conserved across mammalian species while variation both in terms of length of Dicer enzyme and presence or absence of domain is evident in the lower organisms.

Functional Characterization of khadi Yeasts Isolates for Selection of Starter Cultures

  • Motlhanka, Koketso;Lebani, Kebaneilwe;Garcia-Aloy, Mar;Zhou, Nerve
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.307-316
    • /
    • 2022
  • Yeasts play an important role in spontaneous fermentation of traditional alcoholic beverages. Our previous study revealed that a mixed-consortia of both Saccharomyces and non-Saccharomyces yeasts were responsible for fermentation of khadi, a popular, non-standardized traditional beverage with an immense potential for commercialization in Botswana. Functional characterization of isolated fermenting yeasts from mixed consortia is an indispensable step towards the selection of potential starter cultures for commercialization of khadi. In this study, we report the characterization of 13 khadi isolates for the presence of brewing-relevant phenotypes such as their fermentative capacity, ability to utilize a range of carbon sources and their ability to withstand brewing-associated stresses, as a principal step towards selection of starter cultures. Khadi isolates such as Saccharomyces cerevisiae, Saccharomycodes ludwigii and Candida ethanolica showed good brewing credentials but Lachancea fermentati emerged as the isolate with the best brewing attributes with a potential as a starter culture. However, we were then prompted to investigate the potential of L. fermentati to influence the fruity aromatic flavor, characteristic of khadi. The aroma components of 18 khadi samples were extracted using headspace solid phase micro-extraction (HS-SPME) and identified using a GC-MS. We detected esters as the majority of volatile compounds in khadi, typical of the aromatic signature of both khadi and L. fermentati associated fermentations. This work shows that L. fermentati has potential for commercial production of khadi.

Granule-Bound Starch Synthase I (GBSSI): An Evolutionary Perspective and Haplotype Diversification in Rice Cultivars

  • Sang-Ho Chu;Gi Whan Baek;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.219-219
    • /
    • 2022
  • Granule-bound starch synthase I (GBSSI), encoded by the waxy gene, is responsible for the accumulation of amylose during the development of starch granules in rice endosperm. Despite many findings on waxy alleles, the genetic diversity and evolutionary studies are still not fully explored regarding their functional effects. Comprehensive evolutionary analyses were performed to investigate the genetic variations and relatedness of the GBSSI gene in 374 rice accessions composed of 54 wild accessions and 320 bred cultivars (temperate japonica, tropical japonica, indica, aus, aromatic, and admixture). GBSS1 coding regions were analyzed from a VCF file retrieved from whole-genome resequencing data, and eight haplotypes were identified in the GBSSI coding region of 320 bred cultivars. The genetic diversity indices revealed the most negative Tajima's D value in the tropical-japonica, followed by the aus and temperate-japonica, while Tajima's D values in indica were positive, indicating balancing selection. Diversity reduction was noticed in temperate japonica (0.0003) compared to the highest one (wild, 0.0044), illustrating their higher genetic differentiation by FST-value (0.604). The most positive Tajima's D value was observed in indica (0.5224), indicating the GBSSI gene domestication signature under balancing selection. In contrast, the lowest and negative Tajima's D value was found in tropical japonica (-0.5291), which might have experienced a positive selection and purified due to the excess of rare alleles. Overall, our study offers insights into haplotype diversity and evolutionary fingerprints of GBSSI. It ako provides genomic information to increase the starch content of cooked rice.

  • PDF

Method of Signature Extraction and Selection for Ransomware Dynamic Analysis (랜섬웨어 동적 분석을 위한 시그니처 추출 및 선정 방법)

  • Lee, Gyu Bin;Oak, Jeong Yun;Im, Eul Gyu
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • Recently, there are increasing damages by ransomware in the world. Ransomware is a malicious software that infects computer systems and restricts user's access to them by locking the system or encrypting user's files saved in the hard drive. Victims are forced to pay the 'ransom' to recover from the damage and regain access to their personal files. Strong countermeasure is needed due to the extremely vicious way of attack with enormous damage. Malware analysis method can be divided into two approaches: static analysis and dynamic analysis. Recent malwares are usually equipped with elaborate packing techniques which are main obstacles for static analysis of malware. Therefore, this paper suggests a dynamic analysis method to monitor activities of ransomware. The proposed method can analyze ransomwares more accurately. The suggested method is comprised of extracting signatures of benign program, malware, and ransomware, and selecting the most appropriate signatures for ransomware detection.

Intrusion Detection Learning Algorithm using Adaptive Anomaly Detector (적응형 변형 인식부를 이용한 침입 탐지 학습알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won;Kim, Young-Soo;Lee, Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.451-456
    • /
    • 2004
  • Signature based intrusion detection system (IDS), having stored rules for detecting intrusions at the library, judges whether new inputs are intrusion or not by matching them with the new inputs. However their policy has two restrictions generally. First, when they couldn't make rules against new intrusions, false negative (FN) errors may are taken place. Second, when they made a lot of rules for maintaining diversification, the amount of resources grows larger proportional to their amount. In this paper, we propose the learning algorithm which can evolve the competent of anomaly detectors having the ability to detect anomalous attacks by genetic algorithm. The anomaly detectors are the population be composed of by following the negative selection procedure of the biological immune system. To show the effectiveness of proposed system, we apply the learning algorithm to the artificial network environment, which is a computer security system.

Adaptive Intrusion Detection Algorithm based on Learning Algorithm (학습 알고리즘 기반의 적응형 침입 탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won;Lee, Dong-Wook;Seo, Dong-Il;Choi, Yang-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • Signature based intrusion detection system (IDS), having stored rules for detecting intrusions at the library, judges whether new inputs are intrusion or not by matching them with the new inputs. However their policy has two restrictions generally. First, when they couldn`t make rules against new intrusions, false negative (FN) errors may are taken place. Second, when they made a lot of rules for maintaining diversification, the amount of resources grows larger proportional to their amount. In this paper, we propose the learning algorithm which can evolve the competent of anomaly detectors having the ability to detect anomalous attacks by genetic algorithm. The anomaly detectors are the population be composed of by following the negative selection procedure of the biological immune system. To show the effectiveness of proposed system, we apply the learning algorithm to the artificial network environment, which is a computer security system.

Genetic Diversity and Population Structure Analyses of SSIV-2 Gene in Rice

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.212-212
    • /
    • 2022
  • Soluble starch synthase (SS) IV-2 is one of the starch synthase gene family members and responsible for starch chain elongation interacting with other rice eating and cooking quality controlling genes (e.g., AGPlar and PUL). SSIV-2 is mainly expressed in leaves, especially at grain-filling stage and its alleles can significantly affect rice quality. Here, we investigated the genetic diversity and population structure analyses of SSIV-2 gene by using 374 rice accessions. This rice set was grouped into 320 cultivated bred (subsequently classified into temperate japonica, indica, tropical japonica, aus, aromatic and admixture) and 54 wild rice. Haplotyping of cultivated rice accessions provided a total of 7 haplotypes, and only three haplotypes are functional indicating four substituted SNPs in two exons of chromosome 5: T/A and G/T in exon 4, and C/G and G/A in exon 13. Including the wild, a highest diverse group (0.0041), nucleotide diversity analysis showed temperate japonica (0.0001) had a lowest diversity value indicating the origin information of this gene evolution. Higher and positive Tajima5s D value of indica (1.9755) indicate a selective signature under balancing selection while temperate japonica (-0.9018) was in lowest Tajima's D value due to a recent selective sweep by positive selection. We found the most diverse genetic components of the wild in PCA but shared in some portion with other cultivated groups. Fixation index (FST-values) and phylogenetic analysis indicate a closer relationship of the wild with indica (FST=0.256) than to its association to both of temperate japonica (FST=0.589). Structure analysis shows a clear separation of cultivated subpopulations at every K value, but genetic components were admixed within the wild illustrating the same genetic background with japonica and indica in some proportion.

  • PDF

Whole-Genome Resequencing Analysis of Hanwoo and Yanbian Cattle to Identify Genome-Wide SNPs and Signatures of Selection

  • Choi, Jung-Woo;Choi, Bong-Hwan;Lee, Seung-Hwan;Lee, Seung-Soo;Kim, Hyeong-Cheol;Yu, Dayeong;Chung, Won-Hyong;Lee, Kyung-Tai;Chai, Han-Ha;Cho, Yong-Min;Lim, Dajeong
    • Molecules and Cells
    • /
    • v.38 no.5
    • /
    • pp.466-473
    • /
    • 2015
  • Over the last 30 years, Hanwoo has been selectively bred to improve economically important traits. Hanwoo is currently the representative Korean native beef cattle breed, and it is believed that it shared an ancestor with a Chinese breed, Yanbian cattle, until the last century. However, these two breeds have experienced different selection pressures during recent decades. Here, we whole-genome sequenced 10 animals each of Hanwoo and Yanbian cattle (20 total) using the Illumina HiSeq 2000 sequencer. A total of approximately 3.12 and 3.07 billion sequence reads were mapped to the bovine reference sequence assembly (UMD 3.1) at an average of approximately 10.71- and 10.53-fold coverage for Hanwoo and Yanbian cattle, respectively. A total of 17,936,399 single nucleotide polymorphisms (SNPs) were yielded, of which 22.3% were found to be novel. By annotating the SNPs, we further retrieved numerous nonsynonymous SNPs that may be associated with traits of interest in cattle. Furthermore, we performed whole-genome screening to detect signatures of selection throughout the genome. We located several promising selective sweeps that are potentially responsible for economically important traits in cattle; the PPP1R12A gene is an example of a gene that potentially affects intramuscular fat content. These discoveries provide valuable genomic information regarding potential genomic markers that could predict traits of interest for breeding programs of these cattle breeds.

The Impact of Electronic Data Interchange on Organization - In case of Structure and Procedure in Purchasing - (EDI의 이용이 조직에 미치는 영향에 관한 실증적 연구 - 산업별 구매부서업무의 구조와 과정을 중심으로 -)

  • Yang, Kyung-Hoon;Wang, Hong-Joon;Yoo, Hoon-Sang
    • Asia pacific journal of information systems
    • /
    • v.9 no.2
    • /
    • pp.77-97
    • /
    • 1999
  • industry each which are using a kind of EDI, supplier-oriented Electronic Data Interchange(SOEDI) to procure materials, equipment and supplies more effectively. The major objective of this study are to determine the basic nature of the impact of SOEDI on the structure and procedure in purchasing. The other is to identify the variables or determinants which influence the benefits which can be experienced in purchasing organizations. This study was conducted through interviewing of organizations which are currently active in the use of EDI. Samples of 107 purchasing organizations were collected. Some key findings of this study are ; 1) There were remarkable differences on influencing level and relationship of determinants which influence the benefits of purchasing organizations. There was the most remarkable one in trading industry. 2) The more suppliers, the more benefits. The transaction rate with suppliers who are affiliated with EDI is low as a whole but suppliers who are affiliated with EDI can be a critical factor on selection of buyers. 3) Procedure related to purchasing order was mainly changed. There is a development on signature but still exists. 4) The number of employees were reduced a little bit.

  • PDF