Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0019

Whole-Genome Resequencing Analysis of Hanwoo and Yanbian Cattle to Identify Genome-Wide SNPs and Signatures of Selection  

Choi, Jung-Woo (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Choi, Bong-Hwan (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Lee, Seung-Hwan (Division of Animal and Dairy Science, Chung Nam National University)
Lee, Seung-Soo (Animal Genetic and Breeding Division, National Institute of Animal Science)
Kim, Hyeong-Cheol (Hanwoo Experiment Station, National Institute of Animal Science, RDA)
Yu, Dayeong (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Chung, Won-Hyong (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Lee, Kyung-Tai (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Chai, Han-Ha (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Cho, Yong-Min (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Lim, Dajeong (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Abstract
Over the last 30 years, Hanwoo has been selectively bred to improve economically important traits. Hanwoo is currently the representative Korean native beef cattle breed, and it is believed that it shared an ancestor with a Chinese breed, Yanbian cattle, until the last century. However, these two breeds have experienced different selection pressures during recent decades. Here, we whole-genome sequenced 10 animals each of Hanwoo and Yanbian cattle (20 total) using the Illumina HiSeq 2000 sequencer. A total of approximately 3.12 and 3.07 billion sequence reads were mapped to the bovine reference sequence assembly (UMD 3.1) at an average of approximately 10.71- and 10.53-fold coverage for Hanwoo and Yanbian cattle, respectively. A total of 17,936,399 single nucleotide polymorphisms (SNPs) were yielded, of which 22.3% were found to be novel. By annotating the SNPs, we further retrieved numerous nonsynonymous SNPs that may be associated with traits of interest in cattle. Furthermore, we performed whole-genome screening to detect signatures of selection throughout the genome. We located several promising selective sweeps that are potentially responsible for economically important traits in cattle; the PPP1R12A gene is an example of a gene that potentially affects intramuscular fat content. These discoveries provide valuable genomic information regarding potential genomic markers that could predict traits of interest for breeding programs of these cattle breeds.
Keywords
Hanwoo; Signature of selection; SNP; Whole-genome sequencing; Yanbian cattle;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Cheng, P. (1984). Livestock breeds of China. FAO Animal Production and Health Paper 46.
2 Choi, J.W., Chung, W.H., Lee, K.T., Lee, J.W., Jung, K.S., Cho, Y., Kim, N., and Kim, T.H. (2013a). Whole genome resequencing of Heugu (Korean Black Cattle) for the genome-wide SNP discovery. Korean J. Food Sci. An. 33, 715-722.   DOI   ScienceOn
3 Choi, J.W., Liao, X., Park, S., Jeon, H.J., Chung, W.H., Stothard, P., Park, Y.S., Lee, J.K., Lee, K.T., Kim, S.H., et al. (2013b). Massively parallel sequencing of Chikso (Korean brindle cattle) to discover genome-wide SNPs and InDels. Mol. Cells 36, 203-211.   DOI
4 Choi, J.W., Liao, X., Stothard, P., Chung, W.H., Jeon, H.J., Miller, S.P., Choi, S.Y., Lee, J.K., Yang, B., Lee, K.T., et al. (2014). Whole-genome analyses of Korean native and Holstein cattle breeds by massively parallel sequencing. PLoS One 9, e101127.   DOI   ScienceOn
5 Cingolani, P., Platts, A., Wang le, L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X. and Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80-92.   DOI
6 Dadi, H., Lee, S.H., Lee, S.S., Park, C., and Kim, K.S. (2014). Interand intra-population genetic divergence of East Asian cattle populations: focusing on Korean cattle. Genes Genom. 36, 261-265.   DOI   ScienceOn
7 Daetwyler, H.D., Capitan, A., Pausch, H., Stothard, P., van Binsbergen, R., Brondum, R.F., Liao, X., Djari, A., Rodriguez, S.C., Grohs, C., et al. (2014). Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858-865.   DOI   ScienceOn
8 Eck, S.H., Benet-Pages, A., Flisikowski, K., Meitinger, T., Fries, R., and Strom, T.M. (2009). Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 10, R82.   DOI   ScienceOn
9 Elsik, C.G., Tellam, R.L., Worley, K.C., Gibbs, R.A., Muzny, D.M., Weinstock, G.M., Adelson, D.L., Eichler, E.E., et al. (2009). The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522-528.   DOI   ScienceOn
10 Food and Agriculture Organization (FAO). (2014). Domestic Animal Diversity Information Service (DAD-IS). http://dad.fao.org/, Accessed September 5, 2014.
11 Ito, M., Nakano, T., Erdodi, F., and Hartshorne, D.J. (2004). Myosin phosphatase: structure, regulation and function. Mol. Cell. Biochem. 259, 197-209.   DOI
12 Fujimoto, A., Nakagawa, H., Hosono, N., Nakano, K., Abe, T., Boroevich, K.A., Nagasaki, M., Yamaguchi, R., Shibuya, T., Kubo, M., et al. (2010). Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat. Genet. 42, 931-936.   DOI   ScienceOn
13 Hu, Z.L., Park, C.A., Wu, X.L., and Reecy, J.M. (2013). Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 41, D871-879.   DOI
14 Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.   DOI
15 Kawahara-Miki, R., Tsuda, K., Shiwa, Y., Arai-Kichise, Y., Matsumoto, T., Kanesaki, Y., Oda, S., Ebihara, S., Yajima, S., Yoshikawa, H., et al. (2011). Whole-genome resequencing shows numerous genes with nonsynonymous SNPs in the Japanese native cattle Kuchinoshima-Ushi. BMC Genomics 12, 103.   DOI   ScienceOn
16 Kim, B.J., Kim, Y.H., Cho, W.H., Bok, K.K., Kim, B.J., and Kang, C.M. (1981). Yanbian Cattle. Yanbian People Publishing House, 1-5.
17 Kozova, M., Kalac, P., and Pelikanova, T. (2009). Changes in the content of biologically active polyamines during beef loin storage and cooking. Meat Sci. 81, 607-611.   DOI   ScienceOn
18 Lee, K.T., Chung, W.H., Lee, S.Y., Choi, J.W., Kim, J., Lim, D., Lee, S., Jang, G.W., Kim, B., Choy, Y.H., et al. (2013). Wholegenome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity. BMC Genomics 14, 519.   DOI   ScienceOn
19 Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589-595.   DOI   ScienceOn
20 Lee, S.H., Park, B.H., Sharma, A., Dang, C.G., Lee, S.S., Choi, T.J., Choy, Y.H., Kim, H.C., Jeon, K.J., Kim, S.D., et al. (2014). Hanwoo cattle: origin, domestication, breeding strategies and genomic selection. J. Anim. Sci. Technol. 56.
21 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.   DOI   ScienceOn
22 Liu, M., Nauta, A., Francke, C., and Siezen, R.J. (2008). Comparative genomics of enzymes in flavor-forming pathways from amino acids in lactic acid bacteria. Appl. Environ. Microbiol. 74, 4590-4600.   DOI   ScienceOn
23 Liu, Y., Qin, X., Song, X.Z., Jiang, H., Shen, Y., Durbin, K.J., Lien, S., Kent, M.P., Sodeland, M., Ren, Y., et al. (2009). Bos taurus genome assembly. BMC Genomics 10, 180.   DOI   ScienceOn
24 Lu, D., Miller, S., Sargolzaei, M., Kelly, M., Vander Voort, G., Caldwell, T., Wang, Z., Plastow, G., and Moore, S. (2013). Genome-wide association analyses for growth and feed efficiency traits in beef cattle. J. Anim. Sci. 91, 3612-3633.   DOI   ScienceOn
25 Matsumura, F., and Hartshorne, D.J. (2008). Myosin phosphatase target subunit: Many roles in cell function. Biochem. Biophys. Res. Commun. 369, 149-156.   DOI   ScienceOn
26 Mishra, C., Palai, T.K., Sarangi, L.N., Prusty, B.R. and Maharana, B.R. (2013). Candidate gene markers for sperm quality and fertility in bulls. Veterinary World 6, 905-910.   DOI
27 McClure, M.C., Morsci, N.S., Schnabel, R.D., Kim, J.W., Yao, P., Rolf, M.M., McKay, S.D., Gregg, S.J., Chapple, R.H., Northcutt, S.L., et al. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 41, 597-607.   DOI   ScienceOn
28 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.   DOI   ScienceOn
29 Merico, D., Isserlin, R., Stueker, O., Emili, A., and Bader, G.D. (2010). Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5, e13984.   DOI   ScienceOn
30 Nalaila, S.M., Stothard, P., Moore, S.S., Li, C., and Wang, Z. (2012). Whole-genome QTL scan for ultrasound and carcass merit traits in beef cattle using Bayesian shrinkage method. J. Anim. Breed. Genet. 129, 107-119.   DOI   ScienceOn
31 Norman, H., Powell, R., Wright, J., and Sattler, C. (2003). Timeliness and effectiveness of progeny testing through artificial insemination. J. Dairy Sci. 86, 1513-1525.   DOI   ScienceOn
32 Ostermeier, G.C., Sargeant, G.A., Yandell, B.S., Evenson, D.P., and Parrish, J.J. (2001). Relationship of bull fertility to sperm nuclear shape. J. Androl. 22, 595-603.
33 Rubin, C.J., Zody, M.C., Eriksson, J., Meadows, J.R., Sherwood, E., Webster, M.T., Jiang, L., Ingman, M., Sharpe, T., Ka, S., et al. (2010). Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464, 587-591.   DOI   ScienceOn
34 Peters, S.O., Kizilkaya, K., Garrick, D.J., Fernando, R.L., Reecy, J.M., Weaber, R.L., Silver, G.A., and Thomas, M.G. (2012). Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J. Anim. Sci. 90, 3398-3409.   DOI
35 Qanbari, S., Pausch, H., Jansen, S., Somel, M., Strom, T.M., Fries, R., Nielsen, R., and Simianer, H. (2014). Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genet. 10, e1004148.   DOI
36 Quang, N., and Zarkadas, C.G. (1989). Comparison of the amino acid composition and connective tissue protein contents of selected bovine skeletal muscles. J. Agric. Food Chem. 37, 1279-1286.   DOI
37 Rubin, C.J., Megens, H.J., Martinez Barrio, A., Maqbool, K., Sayyab, S., Schwochow, D., Wang, C., Carlborg, O., Jern, P., Jorgensen, C.B., et al. (2012). Strong signatures of selection in the domestic pig genome. Proc. Nati. Acad. Sci. USA 109, 19529-19536.   DOI   ScienceOn
38 Stothard, P., Choi, J.W., Basu, U., Sumner-Thomson, J.M., Meng, Y., Liao, X., and Moore, S.S. (2011). Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics 12, 559.   DOI
39 Sun, W.X., Wang, H.H., Jiang, B.C., Zhao, Y.Y., Xie, Z.R., Xiong, K., and Chen, J. (2013). Global comparison of gene expression between subcutaneous and intramuscular adipose tissue of mature Erhualian pig. Genet. Mol. Res. 12, 5085-5101.   DOI   ScienceOn
40 Utsunomiya, Y.T., O'Brien, A.M.P., Sonstegard, T.S., Van Tassell, C.P., do Carmo, A.S., Meszaros, G., Soelkner, J., and Garcia, J.F. (2013). Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods. PLoS One 8, e64280.   DOI
41 Wasseriwan, A. (1979) Symposium on meat flavor chemial basis for meat flavor:A Review. J. Food Sci. 44, 6-11.   DOI
42 Zhang, X., Ma, D., Caruso, M., Lewis, M., Qi, Y., and Yi, Z. (2014). Quantitative phosphoproteomics reveals novel phosphorylation events in insulin signaling regulated by protein phosphatase 1 regulatory subunit 12A. J. Proteomics 109, 63-75.   DOI   ScienceOn
43 Zimin, A.V., Delcher, A.L., Florea, L., Kelley, D.R., Schatz, M.C., Puiu, D., Hanrahan, F., Pertea, G., Van Tassell, C.P., Sonstegard, T.S., et al. (2009). A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10, R42.   DOI   ScienceOn