• Title/Summary/Keyword: Selection probability

Search Result 637, Processing Time 0.023 seconds

A SELECTION PROCEDURE FOR GOOD LOGISTICS POPULATIONS

  • Singh, Parminder;Gill, A.N.
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.3
    • /
    • pp.299-309
    • /
    • 2003
  • Let ${\pi}_1,...,{\pi}_{k}$k($\geq$2) independent logistic populations such that the cumulative distribution function (cdf) of an observation from the population ${\pi}_{i}$ is $$F_{i}\;=\; {\frac{1}{1+exp{-\pi(x-{\mu}_{i})/(\sigma\sqrt{3})}}},\;$\mid$x$\mid$<\;{\infty}$$ where ${\mu}_{i}(-{\infty}\; < \; {\mu}_{i}\; <\; {\infty}$ is unknown location mean and ${\delta}^2$ is known variance, i = 1,..., $textsc{k}$. Let ${\mu}_{[k]}$ be the largest of all ${\mu}$'s and the population ${\pi}_{i}$ is defined to be 'good' if ${\mu}_{i}\;{\geq}\;{\mu}_{[k]}\;-\;{\delta}_1$, where ${\delta}_1\;>\;0$, i = 1,...,$textsc{k}$. A selection procedure based on sample median is proposed to select a subset of $textsc{k}$ logistic populations which includes all the good populations with probability at least $P^{*}$(a preassigned value). Simultaneous confidence intervals for the differences of location parameters, which can be derived with the help of proposed procedures, are discussed. If a population with location parameter ${\mu}_{i}\;<\;{\mu}_{[k]}\;-\;{\delta}_2({\delta}_2\;>{\delta}_1)$, i = 1,...,$textsc{k}$ is considered 'bad', a selection procedure is proposed so that the probability of either selecting a bad population or omitting a good population is at most 1­ $P^{*}$.

Power Allocation for Opportunistic Full-Duplex based Relay Selection in Cooperative Systems

  • Zhong, Bin;Zhang, Dandan;Zhang, Zhongshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3908-3920
    • /
    • 2015
  • In this paper, performance analysis of full-duplex (FD) relay selection under decode-and-forward (DF) relaying mode is carried out by taking into account several critical factors, including the distributions of the received signal-to-noise ratio (SNR) and the outage probability of wireless links. The tradeoff between the FD and half-duplex (HD) modes for relay selection techniques is also analyzed, where the former suffers from the impact of residual self-interference, but the latter requires more channel resources than the former (i.e., two orthogonal channels are required). Furthermore, the impact of optimal power allocation (OPA) on the proposed relay-selection scheme is analyzed. Particularly, the exact closed-form expressions for outage probability of the proposed scheme over Rayleigh fading channels are derived, followed by validating the proposed analysis using simulation. Numerical results show that the proposed FD based scheme outperforms the HD based scheme by more than 4 dB in terms of coding gain, provided that the residual self-interference level in the FD mode can be substantially suppressed to the level that is below the noise power.

N-gram Feature Selection for Text Classification Based on Symmetrical Conditional Probability and TF-IDF (대칭 조건부 확률과 TF-IDF 기반 텍스트 분류를 위한 N-gram 특질 선택)

  • Choi, Woo-Sik;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.381-388
    • /
    • 2015
  • The rapid growth of the World Wide Web and online information services has generated and made accessible a huge number of text documents. To analyze texts, selecting important keywords is an essential step. In this paper, we propose a feature selection method that combines a term frequency-inverse document frequency technique and symmetrical conditional probability. The proposed method can identify features with N-gram, the sequential multiword. The effectiveness of the proposed method is demonstrated through a real text data from the machine learning repository, University of California, Irvine.

Physical Layer Security in Underlay CCRNs with Fixed Transmit Power

  • Wang, Songqing;Xu, Xiaoming;Yang, Weiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.260-279
    • /
    • 2015
  • In this paper, we investigate physical layer security for multiple decode-and-forward (DF) relaying underlay cognitive radio networks (CRNs) with fixed transmit power at the secondary network against passive eavesdropping attacks. We propose a simple relay selection scheme to improve wireless transmission security based on the instantaneous channel information of all legitimate users and the statistical information about the eavesdropper channels. The closed-form expressions of the probability of non-zero secrecy capacity and the secrecy outage probability (SOP) are derived over independent and non-identically distributed Rayleigh fading environments. Furthermore, we conduct the asymptotic analysis to evaluate the secrecy diversity order performance and prove that full diversity is achieved by using the proposed relay selection. Finally, numerical results are presented to verify the theoretical analysis and depict that primary interference constrain has a significant impact on the secure performance and a proper transmit power for the second transmitters is preferred to be energy-efficient and improve the secure performance.

Secure Connectivity Probability of Multi-hop Clustered Randomize-and-Forward Networks

  • Wang, Xiaowei;Su, Zhou;Wang, Guangyi
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.729-736
    • /
    • 2017
  • This work investigates secure cluster-aided multi-hop randomize-and-forward networks. We present a hop-by-hop multi-hop transmission scheme with relay selection, which evaluates for each cluster the relays that can securely receive the message. We propose an analytical model to derive the secure connectivity probability (SCP) of the hop-by-hop transmission scheme. For comparison, we also analyze SCPs of traditional end-to-end transmission schemes with two relay-selection policies. We perform simulations, and our analytical results verify that the proposed hop-by-hop scheme is superior to end-to-end schemes, especially with a large number of hops or high eavesdropper channel quality. Numerical results also show that the proposed hop-by-hop scheme achieves near-optimal performance in terms of the SCP.

Exact Outage Probability Analysis of Proactive Relay Selection in Cognitive Radio Networks with MRC Receivers

  • Ho-Van, Khuong
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.288-298
    • /
    • 2016
  • Proactive relay selection in cognitive radio networks has recently received considerable attention. However, its outage probability analysis is limited to partially-identical fading distributions, uncorrelation among received signal-to-noise ratios (SNRs), and no direct channel. This paper completes this literature deficiency by generalizing the existing analysis for non-identical fading distributions, correlation among received SNRs, and with direct channel. Numerous results demonstrate that relay selection with a direct channel achieves a higher diversity order and superior performance than that without a direct channel at virtually no cost of power and bandwidth. Further, proactive relay selection suffers an error floor at either a large maximum transmit power or large maximum interference power; however, the error floor level can be significantly remedied with an increase in the number of relays.

Slotted ALOHA Based Greedy Relay Selection in Large-scale Wireless Networks

  • Ouyang, Fengchen;Ge, Jianhua;Gong, Fengkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3945-3964
    • /
    • 2015
  • Since the decentralized structure and the blindness of a large-scale wireless network make it difficult to collect the real-time channel state or other information from random distributed relays, a fundamental question is whether it is feasible to perform the relay selection without this knowledge. In this paper, a Slotted ALOHA based Greedy Relay Selection (SAGRS) scheme is presented. The proposed scheme allows the relays satisfying the user's minimum transmission request to compete for selection by randomly accessing the channel through the slotted ALOHA protocol without the need for the information collection procedure. Moreover, a greedy selection mechanism is introduced with which a user can wait for an even better relay when a suitable one is successfully stored. The optimal access probability of a relay is determined through the utilization of the available relay region, a geographical region consisting of all the relays that satisfy the minimum transmission demand of the user. The average number of the selection slots and the failure probability of the scheme are analyzed in this paper. By simulations, the validation and the effectiveness of the SAGRS scheme are confirmed. With a balance between the selection slots and the instantaneous rate of the selected relay, the proposed scheme outperforms other random access selection schemes.

Selection of Appropriate Probability Distribution Types for Ten Days Evaporation Data (순별증발량 자료의 적정 확률분포형 선정)

  • 김선주;박재흥;강상진
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.338-343
    • /
    • 1998
  • This study is to select appropriate probability distributions for ten days evaporation data for the purpose of representing statistical characteristics of real evaporation data in Korea. Nine probability distribution functions were assumed to be underlying distributions for ten days evaporation data of 20 stations with the duration of 20 years. The parameter of each probability distribution function were estimated by the maximum likelihood approach, and appropriate probability distributions were selected from the goodness of fit test. Log Pearson type III model was selected as an appropriate probability distribution for ten days evaporation data in Korea.

  • PDF

Performance Analysis of Decode-and-Forward Relaying with Partial Relay Selection for Multihop Transmission over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoe;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.433-441
    • /
    • 2010
  • Multihop transmission is a promising technique that helps in achieving broader coverage (excellent network connectivity) and preventing the impairment of wireless channels. This paper proposes a cluster-based multihop wireless network that makes use of the advantages of multihop relaying, i.e., path loss gain, and partial relay selection in each hop, i.e., spatial diversity. In this partial relay selection, the node with the maximum instantaneous channel gain will serve as the sender for the next hop. With the proposed protocol, the transmit power and spectral efficiency can be improved over those in the case of direct transmission and conventional multihop transmission. Moreover, at a high signal-to-noise ratio (SNR), the performance of the system with at least two nodes in each cluster is dependent only on the last hop and not on any of the intermediate hops. For a practically feasible decode-and-forward relay strategy, a compact expression for the probability density function of the end-to-end SNR at the destination is derived. This expression is then used to derive closed-form expressions for the outage probability, average symbol error rate, and average bit error rate for M-ary square quadrature amplitude modulation as well as to determine the spectral efficiency of the system. In addition, the probability of SNR gain over direct transmission is investigated for different environments. The mathematical analysis is verified by various simulation results for demonstrating the accuracy of the theoretical approach.

Reliability analysis of circular tunnel with consideration of the strength limit state

  • Ghasemi, Seyed Hooman;Nowak, Andrzej S.
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.879-888
    • /
    • 2018
  • Probability-based design codes have been developed to sufficiently confirm the safety level of structures. One of the most acceptable probability-based approaches is Load Resistance Factor Design (LRFD), which measures the safety level of the structures in terms of the reliability index. The main contribution of this paper is to calibrate the load and resistance factors of the design code for tunnels. The load and resistance factors are calculated using the available statistical models and probability-based procedures. The major steps include selection of representative structures, consideration of the limit state functions, calculation of reliability for the selected structures, selection of the target reliability index and calculation of load factors and resistance factors. The load and resistance models are reviewed. Statistical models of resistance (load carrying capacity) are summarized for strength limit state in bending, shear and compression. The reliability indices are calculated for several segments of a selected circular tunnel designed according to the tunnel manual report (Tunnel Manual). The novelty of this paper is the selection of the target reliability. In doing so, the uniform spectrum of reliability indices is proposed based on the probability paper. The final recommendation is proposed based on the closeness to the target reliability index.