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A SELECTION PROCEDURE FOR GOOD LOGISTICS
POPULATIONS

PARMINDER SINGH! AND A. N. GILL?

ABSTRACT

Let my,..., 7 be k(> 2) independent logistic populations such that the
cumulative distribution function (¢df ) of an observation from the population
T is
_ 1

1+ exp {——7T (z— wq) /(a\/g)}

where p; (—00 < p; < 00) is unknown location mean and o2 is known vari-
ance, i =1,...,k. Let uj be the largest of all p’s and the population m; is
defined to be ‘good’ if y; > ppy — 61, where 4, >0, i =1,..., k. A selection
procedure based on sample median is proposed to select a subset of k lo-
gistic populations which includes all the good populations with probability
at least P*(a pre-assigned value). Simultaneous confidence intervals for the
differences of location parameters, which can be derived with the help of

Fi(x) , | < oo,

proposed procedures, are discussed. If a population with location parameter
pi < pgy — 02 (62 > 81), 1 =1,...,k is considered ‘bad’, a selection proce-
dure is proposed so that the probability of either selecting a bad population
or omitting a good population is at most 1 — P*.

AMS 2000 subject classifications. Primary 62F07; Secondary 62F99.
Keywords. Subset selection, sample median, probability of correct selection, simultaneous

confidence intervals.

1. INTRODUCTION

Consider 1y, ..., be k(> 2) independent logistic populations such that pop-
ulation m; is characterized by the unknown mean p; and common known vari-
ance 02,4 = 1,...,k. The cumulative distribution function (cdf) associated with
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1
C ltexp{-m(z—p)/(0V3)}

Without loss of generality, we can take that ¢ = 1. Let yy) < -+ < pyy be
the unknown ordering of u's. Define the set G of good populations as G =
{z’ i Z R 51} and the set B of the bad populations as B = {z D < Pk
d2}, where 69 > d; > 0. The interest of the experimenter is to select a subset
S C (1,...,k) which contains all the good populations with probability at least
P* (a pre-specified value), k™! < P* < 1.

Initially, ranking and selection problems have generally been studied by using
either the indifference zone approach due to Bechhofer (1954) or subset selection
approach of Gupta (1965). In the indifference approach the selected subset size
is restricted to one and in the subset selection the selected subset size is ran-
dom. Later, Desu (1970) restricted to the criteria of badness and defined a set
of bad populations as By = {z D < k) — 52} . He proposed a subset selection
procedure for which the correct selection is achieved if S C Bf, where BY is
complement of set B;. Lam (1986) proposec. a new procedure for selecting good
normal populations in terms of location parameters. For subset selection proce-
dures to select e-best populations in the selected subset, we refer to Laan (1991,
1992). Chen and Dudewicz (1984) proposed subset selection procedures to select
the best populations in the selected subset. Gill et al. (1993) extended Lam’s
(1986) approach to the scale parameters. For the first time, Verhulst (1945) used
the logistic distribution function as growth function. After this, logistic distri-
bution function finds many applications in the various fields, namely, population
growth, bioassay, medical diagnosis, public health, logistic regression, etc. For
detail applications, we refer Balakrishnan (1992).

The shape of logistic distribution, in many aspects, is similar to the normal

, x| < o0,

Fi(z)

distribution, however have a heavier tail than that of normal distribution. Hence,
whenever there is suspicion of outliers, the logistic distribution is more suitable
approximation to the normal. This motivated us to propose a selection procedures
for selecting the good logistic populations. In the past, Lorenzen and McDonald
(1981) proposed a selection rule, based on the sample median to select a subset
of logistic populations. Han (1979) has studied the rule based on sample means
and gives the approximated selection constants. Later, Laan (1989) studied the
subset selection rule for the logistic distribution, based on the sample mean, for
the case when sample size equal to one.
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In Section 2, we discuss the proposed selection procedure and necessary
constants are tabulated. Simultaneous confidence intervals for the differences
Bk — Hi, @ =1,... .k and pp) — pg), ¢ # 4, that can be derived with the help of
the proposed procedures, are discussed in Section 3. In Section 4, a class of selec-
tion procedure is proposed so that the probability of omitting a good population
or selecting a bad population is less than or equal to 1 — P*.

2. PROPOSED SELECTION PROCEDURE

Our goal is to select a random size subset, say S, of k& populations which
includes the set G. Thus a correct selection (CS) event will occur if G C S. For
a given P* (k=1 < P* < 1) any subset selection procedure R is said to satisfy P*
condition if

P, {CS|R} > P*, VpeQ, (2.1)

where (2= {Hzﬁz (U1, i), — 00 < py < 00, 1 = 1,...,k}. Condition (2.1)
implies that selected subset must contain the set of good populations with prob-
ability at least P*, pre-specified constant, regardless of the configuration of the
parameters. Let X, ..., X;, be a random sample size n (= 2m+1) from i** pop-
ulation m; and Xj.., be the corresponding sample median from the ¢** population
m;, ©=1,..., k. Define the statistic W,,, as

Wy = II_I<_1?§Xk (Xi:m - ,ui) - 1I£ii£k (Xi:m - V‘i) . (22)
Let Fn(:) and f,(:) denote the cdf and pdf, respectively of the sample median
of a sample of size n(= 2m + 1) from the standard logistic population, i.e., from
the logistic population with mean 0 and variance unity. It is easy to see that

o) = g e (7)o < o
and
m—1 |
Fm(l') = ?g%::)) ; (mj_ 1) (2771 -7~ 1)_1 (_1>m—1—j (1 + e—a:r)]+l—2m’

where a = 7r/\/§ The cdf of W,, will be

G(t) = k/_oo_{Fm(x 1) = Fn(2)} ™ fn(z)da.
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Let ¢ = ¢ (k, P*, n) be the P*-quantile of the random variable W,,, i.e., c is the
solution of the equation G,,(c) = P*. Now,

Gm(c) = k/_oo {Fan(z +¢) = Fn(@)}* ™ frm(2)dz

() LR (7 s}

. . k—
X{(l + 6—a(I+C))J+1—2m . (1 + e—a:r)]+1—2m} 1 (23)

X {a(e““)m(l + e_‘”)_'?m}dx.

Putting y = (1 + e‘”)_1 and letting ¢! = e~%, the equation becomes

emle) = (%)kk/m {TS (m; 1) (2m—j - 1)~ (—1)m—1—j}k_1

-
X{(————( Y )_j_1+2m —y2m_j‘1}k_1{(1 —y)m_l(y)‘m“l}dy.

1-cy+ct

The integration on the right hand side of the above equation obtained by using
numerical integration and G,,(c) equated to P*. Then values of ¢, obtained nu-
merically for k = 2(1)10 and m = 1(1)15 , are tabulated in Table 2.1, 2.2 and 2.3
for P* = 0.90, 0.95 and 0.99, respectively.

Let X{jjm < --+ £ X[xjm be the known ordering of sample median. The pro-
posed selection procedures is

R : Include population m; in the selected subset S if and only if
Xiom > X[k]m -6 —c.
That is, choose the set S as
S:{i:Xi;m ZX[k]m—él—c}.

The following theorem shows that proposed selection procedure satisfies the P*-
condition given in (2.1).

THEOREM 2.1. Let G = {z T 61} and ¢ = c(k, P*,n) be the P*-
quantile of the distribution of the random variable W,,,. Then P, {GC S} > P
for e Q.
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TaBLE 2.1 Value of ¢ when P* = 0.90
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n 2 8 4 5 6 7 8 9 10

1 23099 20317 33180 36013 38256 4.0115 4.1703 43089 4.4320
2 14507 1.8269 2.0553 22199 2.3488 2.4546 2.5442 2.6220 2.6907
3  1.1367 1.4271 1.6016 1.7265 1.8236 1.9030 19701 2.0280 2.0791
4 09642 12087 13547 1.4588 15396 1.6054 1.6608 1.7086 1.7507
5 0.8518 1.0667 1.1947 1.2857 1.3561 1.4134 1.4616 1.5031 1.5396
6 0.7711 09652 1.0804 1.1622 1.2254 1.2767 1.3199 1.3571 1.3897
7 07097 0.8879 0.9936 1.0684 1.1263 1.1732 1.2126 1.2466 1.2763
8 0.6610 0.8266 0.9247 0.9942 1.0478 1.0913 1.1278 1.1592 1.1867
9 06210 0.7765 0.8684 09335 0.9837 1.0244 1.0585 1.0879 1.1136
10 0.5876 0.7345 0.8213 0.8827 0.9300 0.9684 1.0006 1.0283 1.0525
11 0.5590 0.6986 0.7811 0.8394 0.8843 0.9207 0.9512 0.9775 1.0004
12 0.5342 0.6675 0.7462 0.8019 0.8447 0.8794 0.9085 0.9335 0.9554
13 05124 06402 0.7157 0.7690 0.8100 0.8432 0.8711 0.8950 0.9160
14 0.4931 06161 0.688 0.7398 0.7792 0.8111 0.8379 0.8609 0.8810
15 0.4758 05944 0.6643 0.7137 0.7517 0.7825 0.8082 0.8304 0.8498

PRrOOF. Define the event A = W,,, < c and let ;) be the location parameter
associated with X, ¢ =1,...,k. Then

Thus, p; > ppy — 4 and (2.4) together implies

Therefore,

A

- {1gigk
<

1<i<k
-

1<i<k

min (X — i) > Xjggm — Mg — c}

max (Xim — pi) — min (Xpm — ) <c

min (X;

m

1<i<k

— Hi) 2 X{pgm — Bk) — C}

}

= {Xim = Xpggm — (o — ) —¢, i =1,...,k}.

{Xi:m_>_X[k}m—51—c,i:1,...,k}=S.

P*=P

E

(A) < PG CS),

VEEQ.

(2.4)

a

In the following section we discuss the simultaneous confidence intervals that

can be derived from the proposed selection procedure.
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TaABLE 2.2 Value of c when P* = 0.95

n 2 8 4 5 6 7 8 9 10
1 2.8204 3.4400 3.8257 4.1087 4.3328 4.5185 4.6771 4.8157 4.9386
2 17509 21174 23406 2.5019 2.6283 2.7321 2.8203 2.8068 2.9644
3 13659 1.6460 1.8147 1.9358 2.03C1 2.1073 2.1725 2.2290 2.2787
4 11561 13906 1.5310 1.6313 1.7092 1.7727 1.8264 1.8727 1.9135
5 1.0200 1.2254 1.3479 1.4353 1.5029 15581 1.6045 1.6446 1.6798
6 09227 1.1076 1.2177 1.2960 1.3565 1.4059 1.4473 1.4831 1.5145
7 0.8487 1.0182 1.1190 1.1905 1.2458 1.2908 1.3286 1.3612 1.3898
8 0.7900 0.9475 1.0408 1.1071 1.1583 1.1999 1.2349 1.2650 1.2914
9 07420 0.8896 0.9771 1.0391 1.0869 1.1258 1.1585 1.1866 1.2113
10 0.7018 0.8412 0.9237 0.9822 1.0273 1.0639 1.0947 1.1212 1.1444
11  0.6675 0.7999 0.8782 0.9337 0.9765 1.0112 1.0403 1.0654 1.0874
12 0.6378 0.7641 0.8388 0.8917 0.9325 0.9656 09934 1.0173 1.0382
13 0.6117 0.7328 0.8043 (0.8550 0.8940 0.9256 0.9522 0.9751 0.9951
14 0.5886 0.7050 0.7737 0.8224 0.8599 0.8903 0.9158 0.9377 0.9569
15 0.5679 0.6801 0.7464 0.7933 0.8294 0.8587 0.8832 0.9043 0.9229
TABLE 2.3 Value of ¢ when P* = 0.99
n 2 3 4 ) 6 7 8 9 10
1 3.9184 4.5342 49193 52020 54259 56110 5.7686 5.9058 6.0271
2 23728 27220 29366 3.0923 32147 3.3155 3.4013 3.4758 3.5417
3 18324 20933 22520 23665 24560 2.5295 2.5918 2.6459 2.6936
4 15429 1.7584 1.8887 1.9824 20553 2.1151 2.1657 2.2095 2.2481
5 13569 1.5442 1.6569 1.7377 1.8006 1.8520 1.8955 1.9330 1.9661
6 1.2248 1.3925 1.4932 1.5652 1.6211 1.6668 1.7054 1.7387 1.7680
7 11250 1.2781 1.3698 1.4353 1.4862 1.5277 1.5626 1.5928 1.6194
8 10460 1.1878 1.2725 1.3330 1.3799 14182 1.4504 1.4782 1.5027
9 09817 1.1142 1.1933 1.2498 1.2936 1.3292 1.3593 1.3852 1.4079
10 09279 1.0527 1.1273 1.1804 1.2218 1.2551 1.2833 1.3077 1.3290
11 0.8820 1.0005 1.0711 1.1214 1.1604 1.1921 1.2188 1.2418 1.2620
12 0.8423 09552 1.0225 1.0704 1.1075 1.1377 1.1631 1.1850 1.2042
13 0.8076 0.9156 0.9800 1.0258 1.0612 1.0901 1.1144 1.1353 1.1536
14 0.7768 0.8806 0.9424 0.9863 1.0203 1.0480 1.0713 1.0913 1.1089
15 0.7493 0.8492 0.9088 0.9511 09833 1.0104 1.0328 1.0521 1.0691
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3. SIMULTANEOUS CONFIDENCE INTERVALS

Hsu (1981) initiated multiple comparisons with the best using the selection
statements. Edward and Hsu (1983), Chen and Vanichbuncha (1989) and Gill
et al. (1993) derived simultaneous confidence intervals in different setting. Si-
multaneous inference for the parameters ppy — i, @ = 1,..., k, referred as mul-
tiple comparison with best, can be derived from selection statement without
decreasing the nominal confidence level of selection statement. The following
theorems provide simultaneous confidence intervals for pu —pi, 2 =1,...,k and

B = Hgp t# 5 7=1,.. .k
THEOREM 3.1. Under the assumptions of Theorem 2.1, we have
PE{G C S, max (0, X[k]m —Xim—¢) < Pik) — Hi S

max (maX(Xj;m — Xim) + ¢, 0), 1= 1,...,k} > p*

J#
ProorF. Consider the event A as defined in Theorem 2.1 and let X;),,, denote
the random variable associated with p(;), 2 = 1,..., k. Then by Theorem 2.1, we
have

AC {,“(k) — Wi > X[k]m — Xim—c,i=1,... ,k}
C {up — 1 = Xpgm — Xim—c, 1 =1,...,k} (3.1)
= {pppg — ps > max (Xpgjm — Xim — ¢,0) }.
Moreover,
A C {Xz’:m_,uiSX(k)m_H[k]‘,'C,i: 1,...,k’}
C {,U[k] - U SX(k)m—Xi;m—f—C,i:l,...,k‘}
C {P[k] — i < I?;ZX (Xjim — Xiim) +c,i=1,..., k} (3.2)
= {,u[k] — p; < max (0, max (Xjum — Xiim) + c), i=1,... ,k}.
J#

But in Theorem 2.1 we see that

Ac{GCS}. (3.3)
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Therefore, from (3.1), (3.2) and (3.3),
P* = P,(4)

<P

=

|

< max (m;x (Xjim — Xim) + ¢ O), i= 1,...,k}.
Y

Hence result follows.

{G - Sa maX(OvX[k]m - Xi:m - C) < Kk — 2%}

O

For deriving simultaneous confidence intervals for the difference pu; — p(y), @ #
4,5 = 1,...,k of the ranked p-values we will use some results stated in the

following lemmas.

LEMMA 3.2. For any i between 1 and k, we have

min (X[j]m - N(j)) < Xjjjm — M) S max (X[j]m - 'u(j)) ’

1< i<j<k
where pu(;) 1s the parameter associated with X[i]m, i=1,...,k.
PROOF.
amin (Xpm = 1) S 100 (Xigm = 1)
= (Xigm — max 1))
< (Xpgm = 139)-

Similarly, we can show that

Thus the lemma follows from (3.4) and (3.5).
LeMMA 3.3. We have the inequalities

gliiélk (Xpim — ey < gliigk (Xiim — 1) 5

max (X — #g)) < max (X — Heny) -

1<i<k 1<i<k

The proof of this lemma follows from Lemma 3.1 and hence omitted.

(3.4)

(3.5)
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THEOREM 3.4. Assume that assumptions of Theorem 2.1 hold. Then
P{X[i]m_X[j]m—C S KT HG S X[i]m_X[j]m+ c,i#4,4,j=1,..., k} > P

PRrOOF. From the definition of event A in Theorem 2.1 and from Lemma, 3.2,

we have
A= {gj&g{k (Xjim — ) — 11§nii£k (Xiom — p3) < c}
€ { mex, (Xppm — pyy) — min (X — sg) < e} (3.6)

= { kg = 5y < Xipm = Xpjm + ¢, 14 15 = 1, k.

Also from Lemma 3.2, we have

A= { min (X[j]m — ,u(j)) > max (X[i]m - /"(i)) - C}

1<j<k = 1<i<k
€ { min, (X — pgi) > max, (Xggm — p50) = < (3.7)

= {M[i]—u[j] > Xigm = Xjjim — @ i# 4, 4, 7=1,... ,k}-

On combining (3.6) and (3.7), we get

AC {X[i]m_X[j]m —c < pp—p) £ Xigm—Xpmto 1 #75, 4,7 =1,... ,k}'

Therefore,

P{X[z]m - X{j]m —c< MG — M) < X[z]m - X[j]m toi#Fg ,i=1,... 7k}
> P(A4) = P*.

4. CONTROLLING BoTH TYPES OF ERRORS

In the selection problems an experimenter can commit two type of errors
namely: (i) omitting a ‘good’ population and (ii) selecting a ‘bad’ population.
Let the population m; be considered good if y; > pp) — 61, 61 > 0 and bad
if p1; < pppy — 92, where d > ;. Consider the interest of the experimenter is
to control both types of errors. He also wants the selected subset to satisfy
G C S C B¢ with high probability, where B¢ is compliment of the set B.
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THEOREM 4.1. Let mi,...,m be k(> 2) be independent logistic populations
with unknown location parameters uy, ..., ug, respectively and with common scale
known variance o* (assume 0% = 1). Let n be chosen such that 6o — 6 > 2c =
2¢c(k, P*, n) and let t be a constant satisfying 0o —c >t > 61 + ¢. Choose the set
S ={i: Ximn > Xjgjm —t}, then P{G C S C B} > P*.

Proor. Let A be defined as in Theorem 2.1 with § = ¢1, then

Y — i )y <t—6 b .
AC{lréliaSXk(Xz.m i) 1r§nilé;lk(X1'm i) <t 51} (4.1)

Following the lines of proof of the Theorem. 2.1 it is easy to show that the event
in the right hand side of (4.1) is contained in the event G C S. Therefore,

AC(GCYS). (4.2)
Also

{s<C B} = {BC s}
= {Xi:m < Xjkjm — t, for all i’s such that p; < ppy— 52}
2 {X(k)m — Xiim >t , for all i’s such that p; < ppy — 52}
= {X(k)m Pl — Xim—ps >t — 82,1 =1,... ,k} (4.3)
=2 {(Xw)m ﬂ[k) ~ (Xim — i) > —¢,i=1,...,k}
- (X(lc)m ,U[k])<c,i:1,...,k,i=1,...,k}
D A

From (4.2) and (4.3), we get
AC{GCSCBY.

Therefore,
= P(A) < PE{G CSCB%}, VueQ.

Hence the result follows. O
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