• 제목/요약/키워드: Selection methods

검색결과 4,100건 처리시간 0.03초

Artificial Intelligence-Based Stepwise Selection of Bearings

  • Seo, Tae-Sul;Soonhung Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.219-223
    • /
    • 2001
  • Within a mechanical system such as an automotive the number of standard machine parts is increasing, so that the parts selection becomes more important than ever before. Selection of appropriate bearings in the preliminary design phase of a machine is also important. In this paper, three decision-making approaches are compared to find out a model that is appropriate to bearing selection problem. An artificial neural network, which is trained with real design cases, is used to select a bearing mechanism at the first step. Then, the subtype of the bearing is selected by the weighting factor method. Finally, types of peripherals such as lubrication methods are determined by a rule-based expert system.

  • PDF

A Portfolio Model for National IT R&D Strategy Project Selection Methods

  • Ryu, Dong-Hyun;Lee, Woo-Jin
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.491-499
    • /
    • 2011
  • In this paper, we offer a new strategic portfolio model for national IT R&D project selection in Korea. A risk and return (R-R) portfolio model was developed using an objectively quantified index on the two axes of risk and return, in order to select a strategic project and allocate resources in compliance with a national IT R&D strategy. We strategize using the R-R portfolio model to solve the non-strategy and subjectivity problems of the existing national R&D project selection model. We also use the quantified evaluation index of the IT technology road map (TRM) and the technical level reports (TLR) for the subjectivity of project selection, and try to discover the weights using the analytic hierarchy process (AHP). In addition, we intend to maximize the chance for a successful national IT R&D project, by selecting a strategic portfolio project and balancing the allocation of resources effectively and objectively.

Variable Selection and Outlier Detection for Automated K-means Clustering

  • Kim, Sung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제22권1호
    • /
    • pp.55-67
    • /
    • 2015
  • An important problem in cluster analysis is the selection of variables that define cluster structure that also eliminate noisy variables that mask cluster structure; in addition, outlier detection is a fundamental task for cluster analysis. Here we provide an automated K-means clustering process combined with variable selection and outlier identification. The Automated K-means clustering procedure consists of three processes: (i) automatically calculating the cluster number and initial cluster center whenever a new variable is added, (ii) identifying outliers for each cluster depending on used variables, (iii) selecting variables defining cluster structure in a forward manner. To select variables, we applied VS-KM (variable-selection heuristic for K-means clustering) procedure (Brusco and Cradit, 2001). To identify outliers, we used a hybrid approach combining a clustering based approach and distance based approach. Simulation results indicate that the proposed automated K-means clustering procedure is effective to select variables and identify outliers. The implemented R program can be obtained at http://www.knou.ac.kr/~sskim/SVOKmeans.r.

Feature Selection Based on Bi-objective Differential Evolution

  • Das, Sunanda;Chang, Chi-Chang;Das, Asit Kumar;Ghosh, Arka
    • Journal of Computing Science and Engineering
    • /
    • 제11권4호
    • /
    • pp.130-141
    • /
    • 2017
  • Feature selection is one of the most challenging problems of pattern recognition and data mining. In this paper, a feature selection algorithm based on an improved version of binary differential evolution is proposed. The method simultaneously optimizes two feature selection criteria, namely, set approximation accuracy of rough set theory and relational algebra based derived score, in order to select the most relevant feature subset from an entire feature set. Superiority of the proposed method over other state-of-the-art methods is confirmed by experimental results, which is conducted over seven publicly available benchmark datasets of different characteristics such as a low number of objects with a high number of features, and a high number of objects with a low number of features.

유전알고리즘을 이용한 최적 k-최근접이웃 분류기 (Optimal k-Nearest Neighborhood Classifier Using Genetic Algorithm)

  • 박종선;허균
    • Communications for Statistical Applications and Methods
    • /
    • 제17권1호
    • /
    • pp.17-27
    • /
    • 2010
  • 분류분석에 사용되는 k-최근접이웃 분류기에 유전알고리즘을 적용하여 의미 있는 변수들과 이들에 대한 가중치 그리고 적절한 k를 동시에 선택하는 알고리즘을 제시하였다. 다양한 실제 자료에 대하여 기존의 여러 방법들과 교차타당성 방법을 통하여 비교한 결과 효과적인 것으로 나타났다.

구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - I 선정방법 (Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - I Ground Motion Selection)

  • 하성진;한상환;지현우
    • 한국지진공학회논문집
    • /
    • 제21권4호
    • /
    • pp.171-179
    • /
    • 2017
  • For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.

웰빙 트랜드가 메뉴 선택에 미치는 영향에 관한 연구 (A Study on the Effects of Well-being Trend on Menu Selection Behavior)

  • 박근한;박헌진;정진우
    • 한국조리학회지
    • /
    • 제14권3호
    • /
    • pp.45-57
    • /
    • 2008
  • The purpose of this study is to initiate a systematic approach to maximize profits through continuous development of menu and build a strong image of Western restaurants located inside hotels by identifying their guests' knowledge and concern and menu selection behavior in well being trend. Findings from the analysis are as follows. First, among the Western menu selection behavior, organic grain and seafood, seasonal event menu, less spicy and more natural cooking methods are favored as the most important consideration. Second, customers' knowledge and concern in well being trend and menu selection behavior were found to be statistically significant. Third, customers' awareness in health and obesity were found to be statistically significant to the concern in well being trend. Fourth, demographical characteristics of customers such as gender, marital status, age, income level and education were tested for their relationships with knowledge and concern in well being trend.

  • PDF

선형회귀에서 변수선택, 변수변환과 이상치 탐지의 동시적 수행을 위한 절차 (A procedure for simultaneous variable selection, variable transformation and outlier identification in linear regression)

  • 서한손;윤민
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.1-10
    • /
    • 2020
  • 본 연구에서는 선형회귀모형에서 이상치와 변수변환을 고려한 변수선택 알고리즘을 다룬다. 제안된 방법은 잠재적 이상치를 탐지하여 제거한 후 변수변환 추정을 위해 최소 절사 제곱 추정법을 적용하며 가능한 모든 회귀모형을 비교하여 최종적으로 변수를 선택한다. 정확한 변수 선택과 추정된 모델의 적합도의 맥락에서 방법의 효율성을 보여주기 위해 실제 데이터 분석 및 시뮬레이션 결과가 제시된다.

H-likelihood approach for variable selection in gamma frailty models

  • Ha, Il-Do;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권1호
    • /
    • pp.199-207
    • /
    • 2012
  • Recently, variable selection methods using penalized likelihood with a shrink penalty function have been widely studied in various statistical models including generalized linear models and survival models. In particular, they select important variables and estimate coefficients of covariates simultaneously. In this paper, we develop a penalize h-likelihood method for variable selection in gamma frailty models. For this we use the smoothly clipped absolute deviation (SCAD) penalty function, which satisfies a good property in variable selection. The proposed method is illustrated using simulation study and a practical data set.

Energy-Efficient Antenna Selection in Green MIMO Relaying Communication Systems

  • Qian, Kun;Wang, Wen-Qin
    • Journal of Communications and Networks
    • /
    • 제18권3호
    • /
    • pp.320-326
    • /
    • 2016
  • In existing literature on multiple-input multiple-output (MIMO) relaying communication systems, antenna selection is often implemented by maximizing the channel capacity or the output single-to-noise ratio (SNR). In this paper, we propose an energy-efficient low-complexity antenna selection scheme for MIMO relaying communication systems. The proposed algorithm is based on beamforming and maximizing the Frobenius norm to jointly optimize the transmit power, number of active antennas, and antenna subsets at the source, relaying and destination. We maximize the energy efficiency between the link of source to relay and the link of relay to destination to obtain the maximum energy efficiency of the system, subject to the SNR constraint. Compared to existing antenna selection methods forMIMO relaying communication systems, simulation results demonstrate that the proposed method can save more power in term of energy efficiency, while having lower computational complexity.