• Title/Summary/Keyword: Selected soils

Search Result 457, Processing Time 0.023 seconds

Evaluation of Salt-Tolerance Plant for Improving Saline Soil of Reclaimed Land (간척지 토양개량을 위한 내염성 식물의 활용성 평가)

  • Lee, Kyeong-Bo;Kang, Jong-Gook;Li, Jumei;Lee, Deog-Bae;Park, Chan-Won;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Reclaimed tidal area is a great agricultural resource in the world. Improvement and utilization of reclaimed soil is an important measure for expanding land resource. This study was conducted to evaluate relative salt-tolerance of plants and its effect for improving saline soil. Eighteen tolerance plants were selected from China, Pakistan and Korea the climate of which is different. The emergence of different varieties in reclaimed soil was in order as FL478>Barnyard grass>Pokkali>Atriplex>Sesbania>Rumex>Alfalfa>Tall Fescue>Ryegrass>Sudan grass. Four varieties, Barnyard grass, Sesbania, Atriplex and Limonium were selected for soil improvement in reclaimed land. Cultivation of Sesbania, Barnyard grass and Atriplex were good to soil physico-chemical quality. Also these plants increased soil organic matter contents and reduced soil salt concentration. Organic matter contents of cultivated soils of Sesbania, Barnyard grass and Atriplex were $4.10g\;kg^{-1}$, $4.60g\;kg^{-1}$ and $2.81g\;kg^{-1}$ respectively. On the other hand organic matter content of uncultivated soils was $2.65g\;kg^{-1}$. As Sesbania and Barnyard grass were applied to cultivated soil like green manure, bulk density improved from $1.42Mg\;m^{-3}$ to $1.39Mg\;m^{-3}$.

Prediction of Arsenic Uptake by Rice in the Paddy Fields Vulnerable to Arsenic Contamination

  • Lee, Seul;Kang, Dae-Won;Kim, Hyuck-Soo;Yoo, Ji-Hyock;Park, Sang-Won;Oh, Kyeong-Seok;Cho, Il Kyu;Moon, Byeong-Churl;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • There is an increasing concern over arsenic (As) contamination in rice. This study was conducted to develope a prediction model for As uptake by rice based on the physico-chemical properties of soil. Soil and brown rice samples were collected from 46 sites in paddy fields near three different areas of closed mines and industrial complexes. Total As concentration, soil pH, Al oxide, available phosphorus (avail-P), organic matter (OM) content, and clay content in the soil samples were determined. Also, 1.0 N HCl, 1.0 M $NH_4NO_3$, 0.01 M $Ca(NO_3)_2$, and Mehlich 3 extractable-As in the soils were measured as phytoavailable As concentration in soil. Total As concentration in brown rice samples was also determined. Relationships among As concentrations in brown rice, total As concentrations in soils, and selected soil properties were as follows: As concentration in brown rice was negatively correlated with soil pH value, where as it was positively correlated with Al oxide concentration, avail-P concentration, and OM content in soil. In addition, the concentration of As in brown rice was statistically correlated only with 1.0 N HCl-extractable As in soil. Also, using multiple stepwise regression analysis, a modelling equation was created to predict As concentration in brown rice as affected by selected soil properties including soil As concentration. Prediction of As uptake by rice was delineated by the model [As in brown rice = 0.352 + $0.00109^*$ HCl extractable As in soil + $0.00002^*$ Al oxide + $0.0097^*$ OM + $0.00061^*$ avail-P - $0.0332^*$ soil pH] ($R=0.714^{***}$). The concentrations of As in brown rice estimated by the modelling equation were statistically acceptable because normalized mean error (NME) and normalized root mean square error (NRMSE) values were -0.055 and 0.2229, respectively, when compared with measured As concentration in the plant.

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants

  • Islam, Md. Rashedu;Madhaiyan, M.;Boruah, Hari P.Deka;Yim, Woo-Jong;Lee, Gill-Seung;Saravanan, V.S.;Fu, Qingling;Hu, Hongqing;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1213-1222
    • /
    • 2009
  • The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

Foliar Fertilization Effect of Environmentally-Friendly Organic Agricultural Materials for Grape Cultivation (포도재배를 위한 친환경 유기농자재의 엽면시비 효과)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.760-763
    • /
    • 2012
  • This study was conducted to investigate foliar treatment effects of organic agricultural materials for the environmentally-friendly cultivation of grape. The organic materials applied were chitosan, wood vinegar (pyroligneous acid), amino acid solution, and ginkgo leaf extract. All the organic materials were relatively strong acidic ranging lower than pH 4.6. when comparing with other organic materials, amino acid solution contained relatively high contents of selected plant nutrients, such as N, P, K, Ca, Mg, Cu, Fe, Mn, and Zn. As comparison of selected soil properties in the grape cultivating field, soil pH values were lower at the harvest stage than at the first stage of grape growing (before treating the organic materials), and electrical conductivity (EC) and soil organic matter content were higher at the harvest stage in the all plots. The concentrations of available phosphorus increased in most of the plot soils except in control plot (conventional treatment). The concentrations of exchangeable K decreased in the plot treated with ginkgo leaf extract and the control plot. The exchangeable Mg concentrations decreased in soils of all the plots. On the other hand, the concentrations of N and K in the grape leaves were higher with the treatments of chitosan and amino acid solution, P concentrations were higher with the applications of chitosan, wood vinegar and amino acid solution, and Ca and Mg concentrations were higher with chitosan and amino acid solution treatments, respectively, than with others. The yields of grape were higher, $1,581{\sim}1,583kg\;10a^{-1}$, in the control and wood vinegar treatment plots than others. Sugar contents of grape were not different among all the plots.

Copper and Zinc Uptake Capacity of a Sorghum-Sudangrass Hybrid Selected for in situ Phytoremediation of Soils Polluted by Heavy Metals (식물정화를 위한 중금속 내성 작물의 선발과 수수-수단그라스 교잡종의 구리와 아연 흡수능력)

  • Oh, Soon-Ja;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1501-1511
    • /
    • 2015
  • As essential trace elements, copper and zinc play important roles in many physiological events in plants. In excess, however, these elements can limit plant growth. This study selected a heavy metal-tolerant plant by analyzing seed germination and biomass of alfalfa (Medicago sativa), canola (Brassica campestris subsp. napus var. nippo-oleifera), Chinese corn (Setaria italica), and a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense), and determined heavy metal uptake capacity by analyzing biomass, chlorophyll a fluorescence, and heavy metal contents under high external copper or zinc levels. The seed germination rate and biomass of the sorghum-sudangrass hybrid were higher under copper or zinc stress compared to the other three plants. The plant biomass and photosynthetic pigment contents of the sorghum-sudangrass hybrid seedlings were less vulnerable under low levels of heavy metals (${\leq}50ppm$ copper or ${\leq}400ppm$ zinc). The maximum quantum yield of PSII ($F_v/F_m$) and the maximum primary yield of PSII ($F_v/F_o$) decreased with increasing copper or zinc levels. Under high copper levels, the decline in $F_v/F_m$ was caused only by the decline in $F_m$, and was accompanied by an increase in non-photochemical quenching (NPQ). The $F_v/F_m$ declined under high levels of zinc due to both a decrease in the maximum fluorescence ($F_m$) and an increase in the initial fluorescence ($F_o$), and this was accompanied by a marked decrease in photochemical quenching (qP), but not by an increase in NPQ. Accumulations of copper and zinc were found in both aboveand below-ground parts of plants, but were greater in the below-ground parts. The uptake capacity of the sorghum-sudangrass hybrid for copper and zinc reached 4459.1 mg/kg under 400 ppm copper and 9028.5 mg/kg under 1600 ppm zinc. Our results indicate that the sorghum-sudangrass hybrid contributes to the in situ phytoremediation of copper or zinc polluted soils due to its high biomass yield.

Proposal of Models to Estimate the Coefficient of Permeability of Soils on the Natural Terrain considering Geological Conditions (지질조건에 따른 자연사면 토층의 투수계수 산정모델 제안)

  • Jun, Duk-Chan;Song, Young-Suk;Han, Shin-In
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2010
  • The soil tests have been performed on the specimens obtained from about 1,150 sites including landslides and non-landslides areas in natural terrains for last 10 years. Based on the results of those tests, the average soil properties are estimated and the simple equations for estimating permeability are proposed according to geologic conditions. The average permeability in Granite and Mudstone sites is higher than other sites and the content of silt and clay in Mudstone and Gneiss sites is higher than other sites. The correlation analysis and the regression analysis were performed to estimate the coefficient of permeability according to geological conditions. As the result of the correlation analysis, the coefficient of permeability is selected as a dependent variable, and the silt and clay contents, the water contents and the dry unit weights are selected as independent variables. As the result of the regression analysis, the silt and clay contents and the void ratio were involved commonly in the linear regression equations according to geological conditions. To verify the proposed the linear regression equations, the measured result of the coefficient of permeability at other sites was compared with the result predicted with the proposed equations. As the result of comparison, there were a little bit different between them for some data. However the difference was relatively small. Therefore, the linear regression equations for estimating the coefficient of permeability according to geological conditions may be applied to Korean soils. However, these equations should be verified and corrected continuously to improve the accuracy.

Assessment of Growth and Inulin for Jerusalem Artichoke (Helianthus tuberosus L.) Cultivation in Saemangeum Reclaimed Land and Upland Soils (새만금 간척지와 일반밭 토양에서 뚱딴지(Helianthus tuberosus L.) 재배시 생육 및 이눌린 평가)

  • Oh, Yang-Yeol;Kim, Seung-Yeon;Lee, Kwang-Sik;Ryu, Jin-Hee;Lee, Su-Hwan;Ock, Hee-Kyoung;Jung, Kang-Ho;Kang, Bang-Hun;Kim, Kil-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.188-196
    • /
    • 2020
  • BACKGROUND: In order to cultivate upland crops in reclaimed land, economically appropriate crops should be selected. Jerusalem artichoke (Helianthus tuberosus L.) is one of the primary sources for inulin in higher plants. The objective of this study was to evaluate and compare growth and inulin of H. tuberosus L. according to the cultivation region in Korea. METHODS AND RESULTS: 21 varieties of H. tuberosus L. were collected in Korea, and then 7 varieties of H. tuberosus L. were selected for this study. To compare growth and inulin, those varieties were cultivated in reclaimed land and upland soils. The growth of H. tuberosus L. significantly decreased when cultivated in reclaimed land. There was an increas at 17.8% in the content of white H. tuberosus L. tuber inulin in reclaimed land. CONCLUSION: The content of inulin in H. tuberosus L. tubers was found to be dependent on cultivation region and tuber color. There was a difference of the inulin content between the tubers with different colors in reclaimed land. Purple tubers of P20 were considered suitable varieties for cultivation in reclaimed land. White tubers of W1 and W8 were also considered suitable varieties for cultivation in reclaimed land.

Reduction of Stress Caused by Drought and Salt in Rice (Oryza sativa L.) Crops through Applications of Selected Plant Extracts and the Physiological Response Mechanisms of Rice

  • Hyun Hwa Park;Young Seon Lee;Yong In Kuk
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.57-57
    • /
    • 2022
  • In many areas of the world, salt damage and drought have had a negative impact on human survival due to a decrease in agricultural productivity. For instance, about 50% of agricultural land will be affected by salt damage by 2050. Biostimulants such as plant extracts can not only increase the nutrient utilization efficiency of plants, but also promote plant growth and increase resistance to abiotic or biotic stress. Therefore, the objective of this study was to determine how selected plant extracts might reduce levels of stress caused by drought and salt and to better understand the physiological response mechanisms of rice plants. In this study, we used Soybean leaves, Soybean stems and Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts were used. These extracts had been used in previous studies and were found to be effective. The materials were dried in a dry oven at 50℃ for 5 days and ground using a blender. Each 50 g of materials was put in 1 L of distilled water, stirred for 24 hours, filtered using 4 layers of mirocloth, and then concentrated using a concentrator. Rice (cv. Hopumbyeo) seeds were immersed and germinated, and then sown in seedbeds filled with commercial soil. In drought experiments, three rice seedlings at 1 week after seeding was transplanted into 100 ml cups filled with commercial soils and grown until the 4-leaf stage. For this experiment, the soil weight in a cup was equalized, and water was allowed to become 100% saturated and then drained for 24 hours. Thereafter, plant extracts at 3% concentrations were applied to the soils. For NaCl treatments, rice plants at 17 days after seeding were treated with either 100 mM NaCl or plant extracts at 1%+ 100 mM NaCl combinations in the growth chamber. Leaf injury, relative water content, photosynthetic efficiency, and chlorophyll contents were measured at 3, 5, and 6 days after treatments. Shoot fresh weight of rice under drought conditions increased 28-37% in response to treatments of Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Shoot fresh weight of rice subjected to 100 mM NaCl treatments also increased by 6-24% in response to Soybean leaf, Soybean stem, Allium tuberosum, Allium cepa, Hizikia fusiforme, and Gracilaria verrucosa extracts at 3% when compared with control plants. Compared to the control, rice plants treated with these six extracts and subjected to drought conditions had significantly higher relative water content, Fv/Fm, total chlorophyll and total carotenoids than control plants. With the exception of relative water contents, rice plants treated with the six extracts and subjected to salt stress (100 mM NaCl treatments) had significantly higher Fv/Fm, total chlorophyll and total carotenoids than control plants. However, the type of extract used did not produce significant difference in these parameters. Thus, all the plant extracts used in this study could mitigate drought and NaCl stresses and could also contribute substantially to sustainable crop production.

  • PDF

Quantitative Approach of Soil Prediction using Environment Factors in Jeju Island (환경요인을 이용한 제주도 토양예측의 정량적 연구)

  • Moon, Kyung-Hwan;Seo, Hyeong-Ho;Sonn, Yeon-Kyu;Song, Kwan-Chul;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.360-369
    • /
    • 2012
  • Parent material, climate, topography, biological factors, and time are considered five soil forming factors. This study was conducted to elucidate the effects of several environment factors on soil distribution using quantitative analysis method, called soil series estimation algorithm in the soils of Jeju Island. We selected environment factors including mean temperature, annual precipitation, surface geology, altitude, slope, aspect, altitude difference within 1 $km^2$ area, topographic wetness index, distance from the shore, distance from the mountain peak, and landuse for a quantitative analysis. We analyzed the ranges of environment factors for each soil series and calculated probabilities of possible-soil series for certain locations using estimation algorithm. The algorithm can predicted exact soil series on the soil map with correctness of 33% on $1^{st}$ ranking, 62% within $2^{nd}$ ranking, 74% within $5^{th}$ ranking after estimating using randomly extracted environment factors. In predicted soil map, soil sequences of Entisols-Alfisols-Andisols on northern area and Alfisols-Ultisols-Andisols on western area can be suggested along increasing altitude. More modeling studies will be needed for the genesis process of soils in Jeju Island.

Use of Two Dimensional Electrical Resistivity Tomography to Identify Soil Water Dynamics and the Effective Plant Root Zone

  • Yoon, Sung-Won;Zhang, Yong-Seon;Han, Kyung-Hwa;Jo, Hee-Rae;Ha, Sang-Keun;Park, Sam-Kyeu;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.353-359
    • /
    • 2012
  • The identification of effective root zone would clarify dynamics of plant available water and soil water balance. Using the relationship between soil properties and electrical resistivity (ER) the purpose of this research is to identify soil zone affected by a plant root activity using electrical resistivity tomography (ERT) technique. Four plastic containers were prepared for two different soil textures (clay and sandy loam) and one container for each texture was selected for planting four corn seedlings (Zea mays L.) and the others were prepared for the blank. For ERT monitoring, we prepared 0.8 m plastic sticks with 17 electrodes installed with 5 cm space. The Ministing (AGI Inc., Texas) instrument for electrical resistivity measurement and semi-auto converter of electrode arrangement were set up for dipole-dipole array. During 2 months of the corns growing, ERT monitoring was made 3 to 4 days after the irrigation practice. Despite of the same amount water supplied into soils, two textures showed very different apparent resistivity values due to different clay content. The apparent electrical resistivity is consistently lower in clay loam comparing to sandy loam soil implying that plant root does not significantly alter the overall trend of resistivity. When plant root system, however, is active both soils with plants showed 2-7 times higher electrical resistivity and higher coefficient variation than soils without plant, implying the effect of root system on the resistivity, in which may caused by. This result suggests plant root activities regulating the soil water dynamics mainly control the variation of electrical resistivity over soil textural difference. Therefore the identification of water uptake zone would highly be correlated to plant root activities, thus ERT will be feasible approach to identify spatial characteristics of a plant root activity.