• Title/Summary/Keyword: Selected area diffraction pattern

Search Result 14, Processing Time 0.026 seconds

The Fabrication of Mg9Ti1-(10, 20 wt%)Ni Hydrogen Absorbing Alloys by Hydrogen Induced Mechanical Alloying and Evaluation of Hydrogenation Properties (Part I : Preparations and Characterizations of Alloys) (수소 가압형 기계적 합금화법을 이용한 Mg9Ti1-(10, 20 wt%)Ni 수소저장합금의 제조와 수소화 특성 (제 1보 : 합금제조와 특성평가))

  • Hong, Tae-Whan;Kim, Gyung-Bum;Kim, Young-Jig
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.197-203
    • /
    • 2002
  • The main emphasis of this study was to find an new hydrogen absorbing alloy such as Mg-Ti-Ni-H systems, and to investigate their hydrogenation properties. ($Mg_9Ti_x$)-10, 20wt%Ni-Hx systems were prepared by hydrogen induced mechanical alloying(HIMA) using Mg and Ni chips and sponge Ti. The particles synthesized were characterized by X-ray diffraction, and their morphologies were observed by means of scanning electron microscopy(SEM) with energy dispersive spectrometry (EDS). In addition, the crystal structures were analyzed in terms of their bright-/ dark field images and the selected area diffraction pattern(SADP) of transmission electron microscopy(TEM).

A Study of the Crystal Structure of the Fine S-Phase Precipitate in Al-Cu-Mg Alloy by Electron Diffraction Experiments (전자회절실험에 의한 알루미늄 합금 (Al-Cu-Mg)의 미세 S-상 석출입자에 대한 결정구조 연구)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.1-9
    • /
    • 2005
  • In this paper it is reported that a comprehensive study of the crystal structure of the fine size S-phase ($Al_2CuMg$) precipitate in Al-Cu-Mg alloy by electron diffraction experiments. The experiments involve taking the selected area diffraction pattern for a S-phase particle, simulations of the pattern based on the kinematical diffraction theory and quantitative data collection from the zone axis diffraction patterns for the comparison with calculated diffraction intensity using both the kinematical and the dynamical diffraction theory. As a result, a good fitting model of the S-phase structure turns out to be the model reported early by X-ray methods (Perlitz & Westgren, 1943), not the new model determined by HRTEM methods (Radmilovic et al., 1999).

Ferroelectric Domain Structure and Array of Tetragonal and Rhombohedral Phase in PZT Ceramics at MPB Composition (상경계 PZT 세라믹스의 강유전 분역구조 및 정방정상과 능면체정상의 공간적 배열)

  • 천채일;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.919-924
    • /
    • 1993
  • Domain structure and the spatial arrangement of tetragonal and rhombohedral phases in PZT ceramics at MPB composition were investigated with a transmission electron microscope. Fringe Contrast and doublet spot splitting were observed in the image mode and the selected area diffraction pattern, respectively. Besides, triplet spot splitting was also observed in the other part of the specimen. These observations indicate that both the single phase regions and the regions which are comosed of alternatively arranged tetragonal and rhombohedral domains coexist in a PZT ceramics at the MPB composition.

  • PDF

Dark-field Transmission Electron Microscopy Imaging Technique to Visualize the Local Structure of Two-dimensional Material; Graphene

  • Na, Min Young;Lee, Seung-Mo;Kim, Do Hyang;Chang, Hye Jung
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.23-31
    • /
    • 2015
  • Dark field (DF) transmission electron microscopy image has become a popular characterization method for two-dimensional material, graphene, since it can visualize grain structure and multilayer islands, and further provide structural information such as crystal orientation relations, defects, etc. unlike other imaging tools. Here we present microstructure of graphene, particularly, using DF imaging. High-angle grain boundary formation wass observed in heat-treated chemical vapor deposition-grown graphene on the Si substrate using patch-quilted DF imaging processing, which is supposed to occur by strain around multilayer islands. Upon the crystal orientation between layers the multilayer islands were categorized into the oriented one and the twisted one, and their local structure were compared. In addition information from each diffraction spot in selected area diffraction pattern was summarized.

A Simple Method to Determination the Rotation Angle Between an Image and its Diffraction Pattern with LACBED Patterns (LACBED 패턴으로부터 전자현미경 상에 대한 회절도형의 회전각을 측정하는 간단한 방법)

  • Kim, Hwang-Su;Kim, Jong-Pil
    • Applied Microscopy
    • /
    • v.33 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • When electron microscope images and selected area diffraction patterns of crystalline materials are being compared, it is important to know for the rotation of the diffraction pattern with respect to the image caused by the magnetic lens in the Electron Microscope. A well-known method to determine this rotation is to use a test crystal of $MoO_3$. But this method of determination of the rotation angle contains an uncertainty of $180^{\circ}$. Thus one has to devise another way to eliminate this uncertainty. In this paper we present a new and simple method of determining this rotation without any complexity. The method involves a process of obtaining LACBED patterns of crystalline materials. For the J2010 electron microscope, the rotation is determined to be $180^{\circ}$ and this angle remains unchanged for changing of the magnification and the camera length.

Chemical Reaction between Aluminium and graphite Crucible During the Fabrication of Spherical Monosized Al particles

  • Kwon, Hansang
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.99-103
    • /
    • 2018
  • Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (${\gamma}-Al_2O_3$) layer generated in the initial state. The ${\gamma}-Al_2O_3$ layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the ${\gamma}-Al_2O_3$ layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.

Fabrication and characterization of ternary compound ZnCdS nanowires

  • Lee, Dong-Jin;Son, Moon-A;Kang, Tae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.57-57
    • /
    • 2010
  • Self assembled $Zn_{x-1}Cd_xS$ nanowires, synthesized on a Indium tin oxide coated glass substrate with low composition of Cd as x=0.09, were fabricated non-precursor via a co-evaporation method using of solid sources of CdS and ZnS. We studies that ZnCdS nanowires are dislocation-free and the single crystalline hexagonal wurtzite structure showed by transmission electron microscopy and selected area electron diffraction pattern. Cathode luminescence spectra showed an near band edge peak at 383nm originated from nanowires at 80K and 300K. Core level spectra of the Cd 3d, Zn 2p and S 2p in the ZnCdS nanorods were obtained by x-ray photoelectron spectroscopy. Prepared ZnCdS nanorods showed different shape with increase of substrate temperature at the growth.

  • PDF

Hydrothermal Synthesis of Cubic Mesocrystal CeO2 for Visible Photocatalytic Degradation of Rhodamine B

  • Yang, Hexiang;Zhou, Mengkai;Meng, Zeda;Zhu, Lei;Chen, Zhigang;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.144-148
    • /
    • 2015
  • Cubic mesocrystal $CeO_2$ was synthesized via a hydrothermal method with glutamic acid ($C_5H_9NO_4$) as a template. The XRD pattern of a calcined sample shows the face-centered cubic fluorite structure of ceria. Transmission electron microscopy (TEM) and the selected-area electron diffraction (SAED) pattern revealed that the submicron cubic mesocrystals were composed of many small crystals attached to each other with the same orientation. The UV-visible adsorption spectrum exhibited the red-shift phenomenon of mesocrystal $CeO_2$ compared to commercial $CeO_2$ particles; thus, the prepared materials show tremendous potential to degrade organic dyes under visible light illumination. With a concentration of a rhodamine B solution of 20 mg/L and a catalyst amount of 0.1 g/L, the reaction showed higher photocatalytic performance following irradiation with a xenon lamp (${\geq}380nm$). The decoloring rate can exceed 100% after 300 min.

The Thermal Decomposition Process of $\delta$-FeOOH Prepared by Rapid Oxidation Method (급격산화법에 의해 제조된 $\delta$-FeOOH의 열분해과정)

  • 박영도;이훈하;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1501-1506
    • /
    • 1994
  • The precipitate of FeCl2.4H2O and NaOH, Fe(OH)2 was rapidly made to oxidize by H2O2 to prepare $\delta$-FeOOH. The particle size, surface and morphology of $\delta$-FeOOH, and the shape and structure of thermally decomposed $\delta$-FeOOH were investigated by the use of high resolution STEM. $\delta$-FeOOH prepared under the condition of reaction temperature of Fe(OH)2 at 4$0^{\circ}C$, [OH-][Fe2+]=5 and aging time of 2 hr Fe(OH)2, had 630$\AA$ mean particle size, 4~5 aspect ratio, 20.8 emu/g saturation magnetization and 210 Oe coercivity. The edges of $\delta$-FeOOH were inclined to (001) about 41$^{\circ}$, 60$^{\circ}$ and coincident with (102), (101) respectively. When $\delta$-FeOOH was thermally decomposed at 25$0^{\circ}C$ for 2 hr in vacuo, which had micropores of 0.9 nm thickness and crystallites of 2.4 nm thickness. (001)hex, [10]hex. of $\delta$-FeOOH parallel with (001)hex, [100]hex. of $\alpha$-Fe2O3 respectively. This showed three dimensional topotaxial structure transition, which was investigated by SADP (Selected Area Diffraction Pattern) of STEM.

  • PDF

Synthesis of Palladium Nanocubes/Nanorods and Their Catalytic Activity for Heck Reaction of Iodobenzene

  • Ding, Hao;Dong, Jiling
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.105-109
    • /
    • 2016
  • Palladium has been used as a catalyst not only in Suzuki and Heck cross coupling reaction in organic chemistry, but also in automobile industry for the reduction of vehicle exhausts. The catalytic activity of Pd nanoparticles depends strongly on their size and exposed crystalline facets. In this study, the single crystalline palladium nanocubes/nanorods were prepared in the presence of polyvinyl pyrrolidone (PVP) and potassium bromide (KBr) using the polyol method. Selected area diffraction pattern and high-resolution transmission electron microscopy (TEM) were performed by TEM. The result shows that the ratio of KBr/PVP is the key factor to determine whether the product is cubes or rods. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The catalytic activity of these Pd nanocubes towards heck reaction of iodobenzene with acrylate or acrylic acid was found to be higher than that of Pd nanorods. We suspect it is caused by the difference of energy state while Pd nanocubes is {100} plane and nanorods is {111} plane.