• Title/Summary/Keyword: Seizures

Search Result 499, Processing Time 0.034 seconds

Variant of CHD1 gene resulting in a Korean case of Pilarowski-Bjornsson syndrome

  • Yoon Sunwoo;Soo Hyun Seo;Ho-Joong Kim;Moon Seok Park;Anna Cho
    • Journal of Genetic Medicine
    • /
    • v.19 no.2
    • /
    • pp.111-114
    • /
    • 2022
  • Many monogenic neurodevelopmental disorders have been newly identified in recent years owing to the rapid development of genetic sequencing technology. These include variants of the epigenetic machinery - up to 300 known epigenetic factors of which about 50 have been linked to specific clinical phenotypes. Chromodomain, helicase, DNA binding 1 (CHD1) is an ATP-dependent chromatin remodeler, known to be the causative gene of the autosomal dominant neurodevelopmental disorder Pilarowski-Bjornsson syndrome. Patients exhibit various degrees of global developmental delay, autism, speech apraxia, seizures, growth retardation, and craniofacial dysmorphism. We report the first case of Pilarowski-Bjornsson syndrome in Korea, due to a de novo missense variant of the CHD1 gene (c.862A>G, p.Thr288Ala) in a previously undiagnosed 17-year-old male. His infantile onset of severe global developmental delay, intellectual disability, speech apraxia, and failure to thrive are compatible with Pilarowski-Bjornsson syndrome. We also noted some features not previously reported in this syndrome such as skeletal dysplasia and ichthyosis. Further studies are needed to discover the specific phenotypes and pathogenic mechanisms behind this rare disorder.

Cerebral fat embolism syndrome: diagnostic challenges and catastrophic outcomes: a case series

  • Hussein A.Algahtani;Bader H. Shirah;Nawal Abdelghaffar;Fawziah Alahmari;Wajd Alhadi;Saeed A. Alqahtani
    • Journal of Yeungnam Medical Science
    • /
    • v.40 no.2
    • /
    • pp.207-211
    • /
    • 2023
  • Fat embolism syndrome is a rare but alarming, life-threatening clinical condition attributed to fat emboli entering the circulation. It usually occurs as a complication of long-bone fractures and joint reconstruction surgery. Neurological manifestations usually occur 12 to 72 hours after the initial insult. These neurological complications include cerebral infarction, spinal cord ischemia, hemorrhagic stroke, seizures, and coma. Other features include an acute confusional state, autonomic dysfunction, and retinal ischemia. In this case series, we describe three patients with fat embolism syndrome who presented with atypical symptoms and signs and with unusual neuroimaging findings. Cerebral fat embolism may occur without any respiratory or dermatological signs. In these cases, diagnosis was established after excluding other differential diagnoses. Neuroimaging using brain magnetic resonance imaging is of paramount importance in establishing a diagnosis. Aggressive hemodynamic and respiratory support from the beginning and consideration of orthopedic surgical intervention within the first 24 hours after trauma are critical to decreased morbidity and mortality.

Experimental Studies on the Anti-inflammatory Effect of Cannabis sativa based on a Scientometric Analysis

  • Eunsoo Sohn;Sung Hyeok Kim;Sohee Jang;Se-Hui Jung;Kooyeon Lee;Eun-Hwa Sohn
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.45-45
    • /
    • 2021
  • This study aimed to explore research on bibliometric features of cannabis by applying scientometric analysis method, and to approach experimental research evaluation based on it. A total of 30,352 articles on cannabis published since 2001 from SCOPUS were analyzed using KnowledgeMatrix Plus and VOSviewer software. Results showed differences in research activities in countries where cannabis is legalized (Canada, the United States, the Netherlands) and Asian countries where its use is illegal. Related to medical cannabis, there has been a noticeable increase in the number of studies on pain, epilepsy, seizures and brain diseases such as multiple sclerosis. In the field of basic research, the number of pharmacological studies of cannabis on the cannabinoid type 1 receptor signaling pathway and inflammation and obesity has increased significantly. Subsequent experimental studies have compared the anti-inflammatory effects of four parts of Korean cannabis such as root, stem, leaf, and bark. Consistent with the predicted results of the scientometric analysis, all parts of C. sativa showed inhibitory effects on COX-2, NO/iNOS and TNF-α expression in LPS-stimulated RAW264.7 cells. These attempts provide an experimental research approach based on scientometric assessment.

  • PDF

Autoimmune Encephalitis: Insights Into Immune-Mediated Central Nervous System Injury

  • Vivek Pai;Heejun Kang;Suradech Suthiphosuwan;Andrew Gao;Daniel Mandell;Manohar Shroff
    • Korean Journal of Radiology
    • /
    • v.25 no.9
    • /
    • pp.807-823
    • /
    • 2024
  • Autoimmune encephalitis (AE) is a category of immune-mediated disorders of the central nervous system (CNS) affecting children and adults. It is characterized by the subacute onset of altered mentation, neurocognitive issues, refractory seizures/drug-resistant epilepsy, movement disorders, and/or autonomic dysfunction. AE is mediated by autoantibodies targeting specific surface components or intracytoplasmic antigens in the CNS, leading to functional or structural alterations. Multiple triggers that induce autoimmunity have been described, which are mainly parainfectious and paraneoplastic. The imaging features of AE often overlap with each other and with other common causes of encephalitis/encephalopathy (infections and toxic-metabolic etiologies). Limbic encephalitis is the most common imaging finding shared by most of these entities. Cortical, basal ganglia, diencephalon, and brainstem involvement may also be present. Cerebellar involvement is rare and is often a part of paraneoplastic degeneration. Owing to an improved understanding of AE, their incidence and detection have increased. Hence, in an appropriate setting, a high degree of suspicion is crucial when reporting clinical MRIs to ensure prompt treatment and better patient outcomes. In this review, we discuss the pathophysiology of AE and common etiologies encountered in clinical practice.

Therapeutic effect of the mesenchymal stem cells on vigabatrin-induced retinopathy in adult male albino rat

  • Ayat Mahmoud Domouky;Walaa M. Samy;Walaa A. Rashad
    • Anatomy and Cell Biology
    • /
    • v.55 no.2
    • /
    • pp.217-228
    • /
    • 2022
  • Vigabatrin (VGB) is an effective antiepileptic drug used mainly to treat infantile spasms and refractory complex partial seizures. However, using VGB was restricted as it was known to cause retinal toxicity that appears as a severe peripheral visual field defect. Accordingly, this study was conducted to examine the histopathological and biochemical effects of VGB on the retina in adult male albino rats and assess the possible therapeutic role of mesenchymal stem cells (MSCs) against this potential toxicity. The rats were divided into three groups (control group, VGB group, and VGB/MSCs group), one week after 65 days of VGB treatment ±MSCs. The right eyeballs were prepared for histological and immunohistochemical examination, whereas the left eyeballs were prepared for real-time polymerase chain reaction analysis. Our results demonstrated that MSCs ameliorated retinal pathological changes and downregulated the expression of glial fibrillary acidic protein, vascular endothelial growth factor, and synaptophysin after VGB administration suggesting MSCs function and vascular modulating effect. Moreover, MSCs regulate retinal tissue gene expression of BAX, Bcl-2, BDNF, NGF, synapsin, interleukin (IL)-6, IL-1β, and occludin suggesting MSCs antiapoptotic and immunomodulating effect. In conclusion, MSCs administration could be a suitable therapeutic line to ameliorate VGB-induced retinopathy.

Psychopharmacological Profile of the Water Extract of Gardenia jasminoides and Its Constituents, Genipin and Geniposide, in Mice

  • Choi, Ji-Young;Pena, Ike Dela;Choi, Jong-Hyun;Yoon, Seo-Young;Yim, Dong-Sool;Lee, Yong-Soo;Ko, Kwang-Ho;Shin, Chan-Young;Ryu, Jong-Hoon;Kim, Won-Ki;Cheong, Jae-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Gardenia jasminoides (G. jasminoides) is traditionally used to treat insomnia, jaundice, emotional disorders, hepatic disease, and inflammatory disease. Previously, we found that geniposide and the water extract of G. jasminoides increased $Cl^-$ influx in neuroblastoma. Here we examined the sychopharmacological activities of G. jasminoides and its constituents. G. jasminoides extract was orally administered at 100 and 200 mg/kg, and genipin and geniposide were intraperitoneally injected at 2, 10, and 20 mg/kg. G. jasminoides extract (200 mg/kg) significantly decreased total open field activity but increased rearing activity in the center of the open field, suggesting an increase in exploratory activity. Genipin and geniposide did not change open field activity, but geniposide (20 mg/kg) increased rearing activity in the central area. The extract (200 mg/kg) significantly decreased rotarod and wire-balancing activity, but genipin and geniposide did not. No compounds influenced thiopental-induced sleeping or electroshock-induced seizures. The extract (200 mg/kg) significantly increased staying time in the open arms of the elevated plus maze and the entry ratio into the open arms, and geniposide (20 mg/kg) also increased open arm entry. Electroshock stress decreased open arm activity, but the extract and geniposide (20 mg/kg) significantly reversed that effect. This results indicate that G. jasminoides extract and geniposide alleviated anxiety with greater efficacy in stressed animals than normal animals.

Spatiotemporal expression of RCAN1 and its isoform RCAN1-4 in the mouse hippocampus after pilocarpine-induced status epilepticus

  • Cho, Kyung-Ok;Jeong, Kyoung Hoon;Cha, Jung-Ho;Kim, Seong Yun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.81-88
    • /
    • 2020
  • Regulator of calcineurin 1 (RCAN1) can be induced by an intracellular calcium increase and oxidative stress, which are characteristic features of temporal lobe epilepsy. Thus, we investigated the spatiotemporal expression and cellular localization of RCAN1 protein and mRNA in the mouse hippocampus after pilocarpine-induced status epilepticus (SE). Male C57BL/6 mice were given pilocarpine hydrochloride (280 mg/kg, i.p.) and allowed to develop 2 h of SE. Then the animals were given diazepam (10 mg/kg, i.p.) to stop the seizures and sacrificed at 1, 3, 7, 14, or 28 day after SE. Cresyl violet staining showed that pilocarpine-induced SE resulted in cell death in the CA1 and CA3 subfields of the hippocampus from 3 day after SE. RCAN1 immunoreactivity showed that RCAN1 was mainly expressed in neurons in the shammanipulated hippocampi. At 1 day after SE, RCAN1 expression became detected in hippocampal neuropils. However, RCAN1 signals were markedly enhanced in cells with stellate morphology at 3 and 7 day after SE, which were confirmed to be reactive astrocytes, but not microglia by double immunofluorescence. In addition, realtime reverse transcriptase-polymerase chain reaction showed a significant upregulation of RCAN1 isoform 4 (RCAN1-4) mRNA in the SE-induced hippocampi. Finally, in situ hybridization with immunohistochemistry revealed astrocytic expression of RCAN1-4 after SE. These results demonstrate astrocytic upregulation of RCAN1 and RCAN1-4 in the mouse hippocampus in the acute and subacute phases of epileptogenesis, providing foundational information for the potential role of RCAN1 in reactive astrocytes during epileptogenesis.

Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

  • Kim, Ki Jung;Jeun, Seung Hyun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine $(5-HT)_3$ receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine ($1{\sim}300{\mu}M$) resulted in a concentration-dependent reduction in peak amplitude of currents induced by $3{\mu}m$ of 5-HT for an $IC_{50}$ value of $28.2{\pm}3.6{\mu}M$ with a Hill coefficient of $1.2{\pm}0.1$. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, $5-HT_3$-mediated currents evoked by 1 mM dopamine, a partial $5-HT_3$ receptor agonist, were inhibited by lamotrigine co-application. The $EC_{50}$ of 5-HT for $5-HT_3$ receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate $5-HT_3$ receptor desensitization, inhibited $5-HT_3$ receptor currents in a concentration-dependent manner. The deactivation of $5-HT_3$ receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of $5-HT_3$ receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the $5-HT_3$ receptor currents. These results indicate that lamotrigine inhibits $5-HT_3$-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

A Case of Paraneoplastic Limbic Encephalitis Associated with Primary Adenocarcinoma of Lung (비소세포 폐암과 동반된 부수종양성 변연계뇌염 1예)

  • Shin, Hyun Jong;Kim, Hyun Soo;Lim, Keum Nam;Noh, U Seok;Choi, Jung Hye;Kim, In Soon;Lee, Young Yeul;Park, Byeong Bae;Park, Dong Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.4
    • /
    • pp.382-386
    • /
    • 2007
  • Paraneoplastic limbic encephalitis is a rare disorder that is characterized by personality changes, irritability, depression, seizures, memory loss and dementia, and is commonly associated with small cell lung cancer. The cause is unknown but it is believed to be an autoimmune disorder that develops secondary to a carcinomatous process. We report a patient with the clinical feature consistent with limbic encephalitis. A 64-year-old women developed disorientation, memory loss and general weakness. She was diagnosed with NSCLC (adenocarcinoma) with a brain metastasis 1 year earlier and was treated with radiation and chemotherapy. Although the lung mass and brain metastatic lesions had improved, the brain T2-weighted MRI showed high signal intensity in the right temporal region. This lesion consisted of with limbic encephalitis and was negative to the other viral and immune markers. The patient's symptoms did not improve after steroid treatment. Our case demonstrated that a NSCLC (adenocarcinoma) also can be associated with paraneoplastic limbic encephalitis.

Brain-wave Analysis using fMRI, TRS and EEG for Human Emotion Recognition (fMRI와 TRS와 EEG를 이용한 뇌파분석을 통한 사람의 감정인식)

  • Kim, Ho-Duck;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.832-837
    • /
    • 2007
  • Many researchers are studying brain activity to using functional Magnetic Resonance Imaging (fMRI), Time Resolved Spectroscopy(TRS), Electroencephalography(EEG), and etc. They are used detection of seizures or epilepsy and deception detection in the main. In this paper, we focus on emotion recognition by recording brain waves. We specially use fMRI, TRS, and EEG for measuring brain activity Researchers are experimenting brain waves to get only a measuring apparatus or to use both fMRI and EEG. This paper is measured that we take images of fMRI and TRS about brain activity as human emotions and then we take data of EEG signals. Especially, we focus on EEG signals analysis. We analyze not only original features in brain waves but also transferred features to classify into five sections as frequency. And we eliminate low frequency from 0.2 to 4Hz for EEG artifacts elimination.