• Title/Summary/Keyword: Seismicity

Search Result 234, Processing Time 0.02 seconds

Seismic Response Evaluation of Seismically Isolated Nuclear Power Plant with Stiffness Center Change of Friction Pendulum Systems (마찰진자시스템의 강성중심 변화에 따른 면진된 원전 구조물의 지진응답평가)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.265-275
    • /
    • 2017
  • In order to improve the seismic performance of structures, friction pendulum system (FPS) is the most commonly used seismic isolation device in addition to lead rubber bearing (LRB) in high seismicity area. In a nuclear power plant (NPP) with a large self weight, it is necessary to install a large number of seismic isolation devices, and the position of the center of rigidity varies depending on the arrangement of the seismic isolation devices. Due to the increase in the eccentricity, which is the difference between the center of gravity of the nuclear structure and the center of stiffness of the seismic isolators, an excessive seismic response may occur which could not be considered at the design stage. Three different types of eccentricity models (CASE 1, CASE 2, and CASE 3) were used for seismic response evaluation of seismically isolated NPP due to the increase of eccentricity (0%, 5%, 10%, 15%). The analytical model of the seismic isolation system was compared using the equivalent linear model and the bilinear model. From the results of the seismic response of the seismically isolated NPP with increasing eccentricity, it can be observed that the effect of eccentricity on the seismic response for the equivalent linear model is larger than that for the bilinear model.

Numerical investigation on overburden migration behaviors in stope under thick magmatic rocks

  • Xue, Yanchao;Wu, Quansen;Sun, Dequan
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.349-359
    • /
    • 2020
  • Quantification of the influence of the fracture of thick magmatic rock (TMR) on the behavior of its overlying strata is a prerequisite to the understanding of the deformation behavior of the earth's surface in deep mining. A three-dimensional numerical model of a special geological mining condition of overlying TMR was developed to investigate the overburden movement and fracture law, and compare the influence of the occurrence horizon of TMR. The research results show that the movement of overlying rock was greatly affected by the TMR. Before the fracture of TMR, the TMR had shielding and controlling effects on the overlying strata, the maximum vertical and horizontal displacement values of overlying strata were 0.68 m and 0.062 m. After the fracture, the vertical and horizontal displacements suddenly increased to 3.06 m and 0.105 m, with an increase of 350% and 69.4%, respectively, and the higher the occurrence of TMR, the smaller the settlement of the overlying strata, but the wider the settlement span, the smaller the corresponding deformation value of the basin edge (the more difficult the surface to crack). These results are of tremendous importance for the control of rock strata and the revealing of surface deformation mechanism under TMR mining conditions in mines.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Effect of Ground Vibration on Surface Structures and Human Environments -Application of Blasting Vibration to Induced Seismicity in EGS Hydraulic Stimulation- (지반진동이 지상구조물 및 환경에 미치는 영향평가 -발파진동 사례를 통한 EGS 수리자극에의 활용-)

  • Lee, Chung-In;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.521-537
    • /
    • 2013
  • While microseismicity induced by hydraulic stimulation carried out for EGS is useful means in estimating the range of permeability increase, it also affect surface structures and environments. In order to establish a mitigation plan for microseismicity triggered by hydraulic stimulation, we reviewed world-wide guidelines on the impact of ground vibration on the surface structure and human environment by blasting. Case studies from Europe and USA on the microseismicity by hydraulic stimulation are presented and suggestions are made for the guidelines on ground vibration by hydraulic stimulation for the ongoing Pohang EGS project.

Structural Performance Enhancement of Seismic Retrofitted Column Using New Reinforcing Materials (신보강재로 보수 보강한 기둥의 구조 성능 개선)

  • Oh, Chang-Hak;Han, Sang-Whan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.2
    • /
    • pp.121-128
    • /
    • 2001
  • Reinforced concrete frame buildings in regions of low to moderate seismicity are typically designed only for gravity loads with non-seismic detailing provisions of the code. These buildings possess strong beam-weak column, which brings about the brittle structural performance like the column sidesway failure mechanism during the strong lateral load. The objective of this paper is to enhance the column strength and deformation capacity for reconfiguring the structural failure mode by averting a column soft-story collapse and moving to a more ductile beam-sides way mechanism suing new reinforcing materials. Aramid fiber sheet and reinforcing rod-composite materials was used for this purpose. The column was modeled by the 2/3 scale experimental specimen retested. According to the concept of the capacity design, the damaged column was strengthened by the column jacketing using new reinfocing materials such as rod-composite materials. In conclusion, the improvement of the flexural strength is observed and the capacity of the energy dissipation and the ductility is enhanced, too.

  • PDF

An Analysis of Seismic Risk of Seoul Area(I) (서울 수도권 일원의 지진위험 분석(I))

  • 이기화;이태국
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.4
    • /
    • pp.29-35
    • /
    • 1997
  • The probabilistic seismic risk in Seoul Metropolitan Area $(atitude도 37.0^{circ}~37.8^{circ} N, longitude 126.5^{circ}~127.5^{circ} E)$ based on all Korean earthquake data of MM Intensity equal to or greater than V is evaluated by point source method. The seismic risk estimated from all data turned out to be lower than that from the data since the Choseon Dynasty during which seismic data appear to be rather complete. The damaging earthquake of peak horizontal ground acceleration greater than 0.1g turns out to occur with 90% probability of being exceeded in 200 years and 500 years when the data since Choseon Dynasty and all data are used, respectively.

  • PDF

Seismic Performance Evaluation of Seismically Isolated Nuclear Power Plants Considering Various Velocity-Dependent Friction Coefficient of Friction Pendulum System (마찰진자시스템의 마찰계수 변화에 따른 면진된 원전구조물의 거동특성 비교)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-134
    • /
    • 2016
  • In order to improve seismic safety of nuclear power plant (NPP) structures in high seismicity area, seismic isolation system can be adapted. In this study, friction pendulum system (FPS) is used as the seismic isolation system. According to Coulomb's friction theory, friction coefficient is constant regardless of bearing pressure and sliding velocity. However, friction coefficient under actual situation can be changed according to bearing pressure, sliding velocity and temperature. Seismic responses of friction pendulum system with constant friction and various velocity-dependent friction are compared. The velocity-dependent friction coefficients of FPS are varied between low-and fast-velocity friction coefficients according to sliding velocity. From the results of seismic analysis of FPS with various cases of friction coefficient, it can be observed that the yield force of FPS becomes larger as the fast-velocity friction coefficient becomes larger. Also, the displacement response of FPS becomes smaller as the fast-velocity coefficient becomes larger.

Effects of Lap Splice Details on Seismic Performance of RC Columns (RC기둥의 내진성능에 미치는 겹침 이음상세의 영향)

  • Kim, Chul-Goo;Park, Hong-Gun;Kim, Tae-Wan;Eom, Tae-Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.351-360
    • /
    • 2016
  • In regions of low-to-moderate seismicity, various types of lap splices are used for longitudinal reinforcement of columns at the plastic hinge zones. The seismic performance of such lap spliced columns, such as strength, deformation capacity, and energy dissipation, is affected by material strengths, longitudinal re-bar size, confinement of hoops, lap splice location, and lap splice length. In the present study, cyclic loading tests were performed for columns using three types of lap splices (bottom offset bar splice, top offset bar splice, and splice without offset bend). Lap splice length($40d_b$ and $50d_b$) was also considered as test parameters. Ties with 90-degree end hooks were provided in the lap splice length. The test results showed that strength, deformation capacity, and energy dissipation of columns significantly differed depending on the details and the length of lap splices. The bottom offset bar splice showed high ductility and energy dissipation but low strength; on the other hand, the top offset bar splice and the splice without offset bend showed high strength but moderate ductility and energy dissipation.

Seismic performance and damage assessment of reinforced concrete bridge piers with lap-spliced longitudinal steels

  • Chung, Young S.;Park, Chang K.;Lee, Eun H.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.99-112
    • /
    • 2004
  • It is known that lap splices in the longitudinal reinforcement of reinforced concrete (RC) bridge columns are not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the 1992 seismic design provisions of the Korea Bridge Design Specification. The objective of this research is to evaluate the seismic performance of reinforced concrete (RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop an enhancement scheme for their seismic capacity by retrofitting with glassfiber sheets, and to assess a damage of bridge columns subjected to seismic loadings for the development of rational seismic design provisions in low or moderate seismicity region. Nine (9) test specimens with an aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static tests were conducted in a displacement-controlled way under three different axial loads. A significant reduction of displacement ductility was observed for test columns with lap splices of longitudinal reinforcements, whose displacement ductility could be greatly improved by externally wrapping with glassfiber sheets in the plastic hinge region. A damage of the limited ductile specimen was assessed to be relatively small.

Seismic hazard assessment for two cities in Eastern Iran

  • Farzampour, Alireza;Kamali-Asl, Arash
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.681-697
    • /
    • 2015
  • Iran as one of the countries located on the Alpine-Himalayan seismic belt has recently experienced a few number of catastrophic earthquakes. A well-known index of how buildings are affected by earthquakes is through assessment of probable Peak Ground Acceleration (PGA) and structures' response spectra. In this research, active faults around Kerman and Birjand, two major cities in eastern parts of Iran, have been considered. Seismic catalogues are gathered to categorize effects of surrounding faults on seismicity of the region. These catalogues were further refined with respect to time and space based on Knopoff-Gardner algorithm in order to increase statistical independency of events. Probabilistic Seismic Hazard Analysis (PSHA) has been estimated for each of cities regarding 50, 100, 200 and 500 years of structures' effective life-span. These results subsequently have been compared with Deterministic Seismic Hazard Analysis (DSHA). It has been observed that DSHA not necessarily suggests upper bound of PSHA results. Furthermore, based on spectral Ground Motion Prediction Equations (GMPEs), Uniform Hazard Spectra (UHS) and spectral acceleration were provided for 2% and 10% levels of probability of exceedance. The results show that increasing source-to-site distance leads to spectral acceleration reduction regarding each fault. In addition, the spectral acceleration rate of variation would increase if the source-to-site distance decreases.