• Title/Summary/Keyword: Seismic wave velocity

Search Result 347, Processing Time 0.026 seconds

Joint inversion of receiver function and surface-wave phase velocity for estimation of shear-wave velocity of sedimentary layers (퇴적층들의 전단파 속도 평가를 위한 수신함수와 표면파 위상 속도의 통합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • In this study, we propose a joint inversion method, using genetic algorithms, to determine the shear-wave velocity structure of deep sedimentary layers from receiver functions and surface-wave phase velocity. Numerical experiments with synthetic data indicate that the proposed method can avoid the trade-off between shear-wave velocity and thickness that arises when inverting the receiver function only, and the uncertainty in deep structure from surface-wave phase velocity inversion alone. We apply the method to receiver functions obtained from earthquake records with epicentral distances of about 100 km, and Rayleigh-wave phase velocities obtained from a microtremor array survey in the Kanto Plain, Japan. The estimated subsurface structure is in good agreement with the previous results of seismic refraction surveys and deep borehole data.

Three-dimensional S-wave Velocity Structure and Radial Anisotropy of Crust and Uppermost Mantle Beneath East Asia (동아시아 지각과 최상부맨틀의 3차원 S파 속도구조 및 이방성 연구)

  • Lim, DoYoon;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • We investigate the crustal and uppermost mantle SV- and SH-wave velocity structure and radial anisotropy beneath East Asia including Korea, China and Japan. Rayleigh waves and Love waves were extracted from the seismic data recorded at broadband seismic stations in East Asia. Using the MFT (Multiple Filter Technique), we obtained group velocity dispersion curves of Rayleigh and Love waves with a period range of 3 to 200 s. We obtained 62466 Rayleigh-waves dispersion-curve measurements in vertical components and 54141 Love-waves dispersion-curve measurements in transverse components, respectively. The inverted models using these data sets provide SV- and SH-wave velocity structure of crust and uppermost mantle down to 100 km depth. In both cases of the S-wave velocity structures, strong high-velocity anomalies are observed down to 30 km depth beneath the East Sea, and deeper than 30 km depth, strong low-velocity anomalies are found beneath the Tibetan plateau. In the case of the SH-wave velocity structure, strong low-velocity anomalies are observed beneath the East Sea deeper than 30 km depth, leading to negative anisotropy. On the other hand, positive anisotropy is usually observed beneath the Tibetan plateau.

S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil (다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성)

  • Jung, Hee-Ok
    • Journal of the Korean earth science society
    • /
    • v.25 no.8
    • /
    • pp.774-783
    • /
    • 2004
  • The S wave velocity and Q$s^{-1}$ structure of the uppermost part of the soil in Nakdong Delta area have been obtained to determine the characteristics of the forementioned soil. The phase and attenuation coefficients of multichannel seismic records were inverted to obtain the S wave velocity and Q$s^{-1}$ structure of the soil. The inversion results have been compared with the borehole measurements of the area. The seismic signal of the nearest geophone from a seismic source was used as the source signal to obtain the attenuation coefficients. Amplitude ratios of the signal at each geophone to the source signal wave plotted as a function of distance for the frequency range between 10 Hz and 45 Hz. The slope of a linear regression line which fits amplitude ratio-distance relationship best for a given frequency was used as the attenuation coefficients for the frequency. The dispersion curve of Rayleigh waves and the attenuation coefficients were inverted to obtain the S-wave velocity and Q$s^{-1}$, respectively, in the uppermost 8 meter of soil layer. The borehole measurements of the area show that are two distinct layers; the upper 4 meter of silty-sand and the lower 4 meter of silty-clay. The inversion results indicate that the shear wave velocity of the upper layer is 80 m/sec and 40m/sec in the lower silty-clay layer. The spacial resolution of the shear wave velocity structure is very good down to a depth of 8 meter. The Q$s^{-1}$ in the upper silty-sand layer is 0.02 and increase to 0.03 in the lower silty-sand layer. The spacial resolution of quality factor is relatively good down to a depth of 5 meter, but very poor below the depth. In this study, the S-wave velocity is higher in the silty-clay and the Q$s^{-1}$ is smaller silty-sand than in the silty-clay. However, much more data should be analyzed and accumulated before making any generalization on the shear wave velocity and Q$s^{-1}$ of the sediments.

Evaluation of the change in Geotechnical properties due to the Construction of Civil engineering Structure using HWAW Method (HWAW방법을 이용한 토목구조물 건설에 따른 하부 지반 물성 변화 평가)

  • Park, Hyung-Choon;Noh, Hee-Kwan;Park, Byeong-Cheol;Kim, Min-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.182-187
    • /
    • 2010
  • In the various fields of Civil Engineering, shear modulus is very important input parameters to design many constructions and to analyze ground behaviors. In general, a shear wave velocity profile is decided by various experiments before constructing a structure and, analysis and design are carried out by using decided shear wave velocity profile of the site. However, if civil structures are started to construct, the shear wave velocity will be increased more than before constructions because of confining pressure increase by the load of structure. The evaluation of the change in shear wave velocity profile is used very importantly when maintaining, managing, reinforcing and regenerating existing structures. In this study, a non-destructively geotechnical investigation method by using the HWAW method is applied to an evaluation of change in properties of the site according to construction. Generally, the space for experiments is narrow when underground of existing or on-going structures is evaluate, so a prompt non-destructive experiment is required. This prompt non-destructive experiment would be performed by various in-situ seismic methods. However, most of in-situ seismic methods need more space for experiments, so it is difficult to be applied. The HWAW method using the Harmonic wavelet transforms, which is based on time-frequency analysis, determines shear wave velocity profile. It consists of a source as well as short receiver spacing that is 1~3m, and is able to determine a shear wave velocity profile from surface to deep depth by one test on a space. As the HWAW method uses only the signal portion of the maximum local signal/noise ratio to determine a profile, it provides reliability shear modulus profile such as under construction or noisy situation by minimizing effects of noise from diverse vibration on a construction site or urban area. To estimate the applicability of the proposed method, field tests were performed in the change of geotechnical properties according to constructing a minimized modeling bent. Through this study, the change of geotechnical properties of the site was effectively evaluated according to construction of a structure.

  • PDF

Simulation of Dynamic in-situ Soil Properties for the Centrifuge Test (Hualien Site in Taiwan) (원심 모형 시험을 위한 동적 현장 지반 모사 기법 연구(대만 화련 지반))

  • Ha, Jeong-Gon;Lee, Sei-Hyun;Choo, Yun-Wook;Kim, Se-Hee;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.27-36
    • /
    • 2012
  • The simulation of the field dynamic soil properties for soil modeling in the centrifuge test is important. In this study, the process of soil modeling based on the shear wave velocity profile is developed. From the resonant column test in each confining pressure, the shear wave velocity profile is expected and the modeling condition is determined by comparing it with that in the field. During the dynamic centrifuge test, the bender element test is performed for measuring the in-flight shear wave velocity profile, and the applicability of the proposed method was verified. This modeling method is applied to the centrifuge test of the Hualien Large-Scale Seismic test.

Penetration-type Bender Element Probe for Stiffness Measurements of Soft Soils (연약지반 강성측정을 위한 벤더 엘리먼트 프로브)

  • Jung, Jae Woo;Oh, Sang Hoon;Kim, Hak Sung;Mok, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.125-131
    • /
    • 2008
  • Ground stiffness(shear wave velocity) is one of the key parameters in geotechnical earthquake engineering. An In-situ seismic technique has its own advantages and disadvantages over the others in stiffness measurements. By combining the crosshole and seismic cone techniques and utilizing favourable features of bender elements, a new hybrid probe has been developed in order to enhance data quality and easiness of testing. The basic structure of the probe, called "MudFork" is a fork composed of two blades, on each of which source and receiver bender elements were mounted respectively. To evaluate the disturbance caused by the penetration of the probe, shear wave velocity measurements were carried out in the Kaolinite slurry in the laboratory. Finally, the probe was penetrated in coastal mud near Incheon, Korea, using SPT(standard penetration test)rods pushed with a routine boring machine and shear wave velocity measurements were carried out. The results were verified with data from laboratory and cone testing. The performance of the probe turns out to be excellent in terms of data quality and testing convenience.

An Experimental Study on the Shear Wave Velocity Improvement of Ground by Ground Improvement (지반개량을 통한 원지반의 전단파속도 향상에 대한 실험적 연구)

  • Jeong, Chan-Yu;Mun, Jae-Sung;Jo, Myoung-Su;Kang, Ho-deok;Yang, Hee-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.33-39
    • /
    • 2019
  • In this study, an experimental study was carried out with variables of the shape of the ground soil-binder in order to find out whether the shear wave velocity and the ground grade were improved by the ground improvement. In this study, the shear wave velocity was measured using the crosshole method with variables of the shape of the ground soil-binder. In addition, the prediction formula of the shear wave velocity for suitability of N-Values for the domestic soil conditions are proposed using the result value of this study and the existing results of shear wave velocity. As a result, the shear wave velocity of the ground has increased. In addition, the prediction formula proposed in this study reasonably issued the existing experimental results regardless of the stratum conditions.

Pseudo 3D FEM analysis for wave passage effect on the response spectrum of a building built on soft soil layer

  • Kim, Yong-Seok
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1241-1254
    • /
    • 2015
  • Spatially variable ground motions can be significant on the seismic response of a structure due to the incoherency of the incident wave. Incoherence of the incident wave is resulted from wave passage and wave scattering. In this study, wave passage effect on the response spectrum of a building structure built on a soft soil layer was investigated utilizing a finite element program of P3DASS (Pseudo 3-dimensional Dynamic Analysis of a Structure-soil System). P3DASS was developed for the axisymmetric problem in the cylindrical coordinate, but it is modified to apply anti-symmetric input earthquake motions. Study results were compared with the experimental results to verify the reliability of P3DASS program for the shear wave velocity of 250 m/s and the apparent shear wave velocities of 2000-3500 m/s. Studied transfer functions of input motions between surface mat foundation and free ground surface were well-agreed to the experimental ones with a small difference in all frequency ranges, showing some reductions of the transfer function in the high frequency range. Also wave passage effect on the elastic response spectrum reduced the elastic seismic response of a SDOF system somewhat in the short period range.

Earthquake Responses of Nuclear Facilities Subjected to Non-vertically Incidental and Incoherent Seismic Waves (비수직 입사 비상관 지진파에 의한 원전 시설물의 지진 응답)

  • Lee, Jin Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.237-246
    • /
    • 2022
  • Based on the random-vibration-theory methodology, dynamic responses of nuclear facilities subjected to obliquely incidental and incoherent earthquake ground motions are calculated. The spectral power density functions of the 6-degree-of-freedom motions of a rigid foundation due to the incoherent ground motions are obtained with the local wave scattering and wave passage effects taken into consideration. The spectral power density function for the pseudo-acceleration of equipment installed on a structural floor is derived. The spectral acceleration of the equipment or the in-structure response spectrum is then estimated using the peak factors of random vibration. The approach is applied to nuclear power plant structures installed on half-spaces, and the reduction of high-frequency earthquake responses due to obliquely incident incoherent earthquake ground motions is examined. The influences of local wave scattering and wave passage effects are investigated for three half-spaces with different shear-wave velocities. When the shear-wave velocity is sufficiently large like hard rock, the local wave scattering significantly affects the reduction of the earthquake responses. In the cases of rock or soft rock, the earthquake responses of structures are further affected by the incident angles of seismic waves or the wave passage effects.

Estimation of Dynamic Characteristics of Core Zone of Rockfill Dam by Multi-channel Analysis of Surface Waves (MASW 조사를 통한 사력댐 코어존 동적물성의 평가)

  • Lee, Jong-Wook;Ha, Ik-Soo;Oh, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.860-868
    • /
    • 2008
  • Seismic safety analysis of rockfill dams are consist of the stability analysis as an simplifed method and the dynamic analysis as an detailed method. When high risk dams such as Multi-purpose dams were often applied detailed method by dynamic analysis, dynamic properties of dam materials such as shear modulus are considered as most important factor. Dynamic material properties such as shear modulus had to be investigated by cyclic triaxial test et al. during design and construction stage but these were not conducted because of the condition of domestic seismic design technique. MASW and SASW methods had been applied as a non destructive method to investigate dynamic material properties of existing rockfill dam, has no problems in dam safety at present. These methods were usually performed under the assumptions that the subsurface can be described horizontally homogeneous and isotropic layers. Recent studies(Marwin, 1993, Kim, 2001) showed that surface waves generated through inclined structures have different characteristics from those through a horizontally homogeneous layered model. further Kim et al(2005) and Min and Kim(2006) showed that central core type rockfill dam overestimated the shear wave velocities as increasing the depth through the 3D numerical modelling dut to the effect of outer rockfill and geometrical reasons In this study the results of shear wave velocities of seven rockfill dams form comprehensive facility review, was carried out from 2003 to 2007, were collected and analysed to establish the shear wave velocity distribution characteristics in increasing confining stress in rockfill dams and surface wave velocity ranges in rockfill dam through MASW and the limitation in application are discussed to be utilized as an reference value for dynamic analysis.

  • PDF