S-wave Velocity and Attenuation Structure from Multichannel Seismic surface waves: Geotechnical Characteristics of NakDong Delta Soil

다중채널 표면파 자료를 이용하여 구한 S파 속도와 감쇠지수 구조: 낙동강 하구의 연약 지반 특성

  • Jung, Hee-Ok (Department of Ocean System Engineering, Kusan National University)
  • 정희옥 (군산대학교 해양시스템공학과)
  • Published : 2004.12.31

Abstract

The S wave velocity and Q$s^{-1}$ structure of the uppermost part of the soil in Nakdong Delta area have been obtained to determine the characteristics of the forementioned soil. The phase and attenuation coefficients of multichannel seismic records were inverted to obtain the S wave velocity and Q$s^{-1}$ structure of the soil. The inversion results have been compared with the borehole measurements of the area. The seismic signal of the nearest geophone from a seismic source was used as the source signal to obtain the attenuation coefficients. Amplitude ratios of the signal at each geophone to the source signal wave plotted as a function of distance for the frequency range between 10 Hz and 45 Hz. The slope of a linear regression line which fits amplitude ratio-distance relationship best for a given frequency was used as the attenuation coefficients for the frequency. The dispersion curve of Rayleigh waves and the attenuation coefficients were inverted to obtain the S-wave velocity and Q$s^{-1}$, respectively, in the uppermost 8 meter of soil layer. The borehole measurements of the area show that are two distinct layers; the upper 4 meter of silty-sand and the lower 4 meter of silty-clay. The inversion results indicate that the shear wave velocity of the upper layer is 80 m/sec and 40m/sec in the lower silty-clay layer. The spacial resolution of the shear wave velocity structure is very good down to a depth of 8 meter. The Q$s^{-1}$ in the upper silty-sand layer is 0.02 and increase to 0.03 in the lower silty-sand layer. The spacial resolution of quality factor is relatively good down to a depth of 5 meter, but very poor below the depth. In this study, the S-wave velocity is higher in the silty-clay and the Q$s^{-1}$ is smaller silty-sand than in the silty-clay. However, much more data should be analyzed and accumulated before making any generalization on the shear wave velocity and Q$s^{-1}$ of the sediments.

다중채널 탄성파 자료를 이용하여 낙동강 하구 삼각주 지역 연약지반의 지반 특성을 구하기 위하여 S파 속도와 Q$s^{-1}$ 구조를 구하고 이를 시추조사 결과와 비교하였다. 다중채널 신호의 분산곡선을 역산하여 S파 속도구조를 구하고 감쇠지수(attenuation coefficient)를 구하였다. 다중채널 신호 중 음원에서 가장 가까운 신호를 기준 신호로 정하고 10 Hz에서 45 Hz 사이의 주파수에 대하여 거리에 따라 기준 신호에 대한 진폭의 비가 감소하는 정도를 나타내는 기울기를 구하여 감쇠지수를 결정하였다. 이 감쇠지수를 역산하여 지반 최상부 8 m 층의 S파 속도와 함께 Q$s^{-1}$를 구하였다. 이 지역의 시추조사에 의하면 이 지역의 지층은 크게 상부 4 m 실트질 모래층과 하부 4 m 실트질 점토층으로 나누어진다. 표면파 역산에 의해 구해진 S파 속도와Q$s^{-1}$를 시추조사 결과와 비교해보면, 상부 실트질 모래층에서 S파 속도의 공간적 해상도는 약 80m/sec로 하부 실트질 점토층의 속도 40m/sec보다 상대적으로 높은 값을 보인다. 각 층에서 S파 속도의 공간적 해상도는 뚜렷하다. Q$s^{-1}$의 공간구조는 상부 실트질 모래층에서 약 0.02를 보이고 하부 실트질 점토층에서 0.03으로 증가하는 양상을 보인다. Q$s^{-1}$의 공간적 해상도는 상부 약 5 m 구간에서는 양호하나 그 보다 깊은 곳에서는 공간적 해상도가 아주 낮아지는 것을 볼 수 있다. 이 조사지역에서는 실트질 모래층에서 실트질 점토층보다 높은 S파 속도가 나타나고 낮은 Q$s^{-1}$ 값을 보인다. 그러나, 지반의 S파 속도와 Q$s^{-1}$를 결정하는 다른 많은 요인들이 있으므로 이를 일반화하기 위해서는 연약지반의 S파 속도와Q$s^{-1}$에 관한 자료와 연구가 집적되어야 할 것이다.

Keywords

References

  1. 정희옥, 2001, 금강하구 천해성 퇴적층의 연약지반에 관한 연구: 표면파 역산에 의한 S파 속도구조와 해상도, 지구과학회지, 22권, 3호, 179-186
  2. 정희옥, 2003, 표면파 탐사방법을 이용하여 구한 S파 속도구조와 시추결과의 비교 연구,한국지구과학회지, 24권, 6호, 549-557
  3. Aki, K. and Richard, P. G., 1980, Quantitative Seismology, W. H. Freedman and Company, 259-333 p
  4. AI-Eqabi, G. I., and Herrmann, R. B., 1993, Ground roll: A potential tool for constraining shallow shear wave structure, Geophysics, 58 (5), 713-719 https://doi.org/10.1190/1.1443455
  5. Anderson, D. L., Ben-Menahem, A., and Archambeau, C. B., 1965, Attenuation of seismic energy in the upper mantle., Journal of Geophysical Research, 70, 1441-1448 https://doi.org/10.1029/JZ070i006p01441
  6. Cheng. C. C. and Mitchell, B. J., 1987, Crustal Q structure in the United States from multimode surface waves, Bulletin of Seismological Society of America, 71, 161-181
  7. Hardin, B. O. and Dmevich, V. P., 1972, Shear modulus damping in soils: Measurement and parameter effects, Journal of Soil Mechanics and Foundation Division., ASCE 98 (6), 603-624
  8. Herrmann, R. B. and Mitchell, B. J, 1975, Statistical analysis and interpretation of surface wave and elastic attenuation data for the stable interior of North America, Bulletin of Seismological Society of America, 65, 1115-1128
  9. Hoar, R. J. and Stokoe, K. H. II, 1984, Field and laboratory measurements of material damping of soil in shear wave propagation., Proc. 8th World Conference on Earthquake Engineering., Prentice Hall, Englewood Cliffs, N. J. Vol III, 47-54
  10. Johnstone, D. H., Toksoz. M. N., and Timur. A., 1979, Attenuation of seismic waves in dry and saturated rocks: II. Mechanism, Geophysics, 44 (4), 691-711 https://doi.org/10.1190/1.1440970
  11. Lai, C. G., Rix, G. J., Foti, S. and Roma, V., 2002, Simultaneous measurement and inversion of surface wave dispersion and attenuation curves, Soil Dynamics and Earthquake Engineering, 22, 923-930 https://doi.org/10.1016/S0267-7261(02)00116-1
  12. Lee, W. B. and Solomon, S. C. 1975, Inversion schemes for surface wave attenuation and Q in the crust and in the mantle. Geophysical Journal of Royal Astronomy Society, 43, 47-71 https://doi.org/10.1111/j.1365-246X.1975.tb00627.x
  13. Liu, H. P., Warrick, R. E., Westerlund, R. E. and Kayen, R. E., 1994, In site measurement of seismic shear wave absorption in the San Fransisco Holocene bay mud by the pulse broadening method, Bulletin of Seismological Society of America, 86 (5), 62-75
  14. Malagnini, L., 1996, Velocity and attenuation of very shallow soils: Evidence of frequency-dependent Q, Bulletin of Seismological Society of America, 86 (5), 1471-1486
  15. Mok, Y. J., Sanchez-Salieno, I., Stokoe, K. H. II, and Roesset, J. M., 1988, In situ measurement in crosshole seismic method, Earthquake Engineering and Soil Dynamics II - Recent Advances in Ground Motion Evaluation, Geotechnical Special Publication, No. 20, J. L. Von Thun, ed. ASCE, New York, 305-320
  16. Menke, W., 1989, Geophysical data analysis: discrete inverse theory, Academic Press, Sandieo, California, 248 p
  17. Mokhtar,T. A., Herrmann. R. B., and Russel, D. R., 1988, Seismic velocity and Q model for the shallow structure of Arabian Shield from short period Rayleigh waves, Geophysics, 53 (11), 1379-1387 https://doi.org/10.1190/1.1442417
  18. Redpath, B. B. and Lee, R. C., 1986, In situ measurements of shear wave attenuation at a strong motion recording site., Earthquake Notes, 57, 8
  19. Rix, G. J. and Lai, C. G., and Foti, S., 2001, Simultaneous measurement of surface wave dispersion and attenuation curves, Geotechnical Testing Journal, 24 (4), 350-358 https://doi.org/10.1520/GTJ11132J
  20. Rix, G. J., Lai, C. G., and Spang, A. W., 2000, In situ measurement of damping ratio using surface waves, Journal of Geotechnical and Geoenvironmental Engineering, 126 (5), 472-480 https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(472)
  21. Seed, H. B., Wong, R. T., Idriss, I. M, and Tokimasu, K., 1986, Moduli and damping factors for dynamic analyses of cohesionless soils, Journal of Geotechnical Engineering, ASCE 112 (11), 1016-1032
  22. Stoll, R. D., 1974, Acoustic waves in saturated sediments. Physics of sound in marine sediments, Plenum, New York, 19-39 p
  23. Spang, A. W. Jr. 1995, In situ measurements of damping ratio using surface waves, Ph. D. dissertation, Georgia Institute of Technology, Atlanta, 346 p
  24. Vucetic, M. and Dobry, R., 1991, Effect of soil plasticity on cyclic response, Journal of Geotechnical Engineering, ASCE, 117 (1), 89-107 https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
  25. White, J. E., 1983, Underground sound: Applications of seismic waves, Elsevier Science, Amsterdam, 287 p