• 제목/요약/키워드: Seismic wave

검색결과 768건 처리시간 0.024초

사력댐 동적물성 추정을 위한 현장조사기법 적용 및 분석 (Application and Analysis of Field Test and Geophysical Exploration for Dynamic Material Properties of Rockfill Dam)

  • 이종욱;김기영;전제성;조성은
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.352-359
    • /
    • 2005
  • In this study, seismic refraction survey and MASW at dam crest and down-hole test and cross hole test in the boring holes located in dam crest through the core are performed to fin out dynamic material properties, are needed to evaluate dynamic safety of rockfill dam using dynamic analysis method. From the field test and geophysical exploration, applied such as above, p-wave and s-wave velocity profile of each layer of dam body. Dynamic material properties, such as elastic modulus, shear modulus, poissong's ration, are obtained from p-wave and s-wave velocity profile and density profile from formation density logging test.

  • PDF

Seismic and vibration mitigation for the A-type offshore template platform system

  • Lee, Hsien Hua
    • Structural Engineering and Mechanics
    • /
    • 제6권3호
    • /
    • pp.347-362
    • /
    • 1998
  • In this study an improved design method for the traditional A-type(or V-type) offshore template platform system was proposed to mitigate the vibration induced by the marine environmental loadings and the strong ground motions of earthquakes. A newly developed material model was combined into the structural system and then a nonlinear dynamic analysis in the time domain was carried out. The analysis was focused on the displacement and rotation induced by the input wave forces and ground motions, and the mitigation effect for these responses was evaluated when the viscoelastic damping devices were applied. The wave forces exerted on the offshore structures are based on Stokes fifth-order wave theory and Morison equation for small body. A step by step integration method was modified and used in the nonlinear analysis. It was found that the new design approach enhanced with viscoelastic dampers was efficient on the vibration mitigation for the structural system subjected to both the wave motion and the strong ground motion.

실측 동적물성을 이용한 기존 사력댐의 동적거동분석 (Dynamic Analysis of Existing Rockfill Dam Using Dynamic Properties by Field Test and Geophysical Exploration)

  • 이종욱;오병현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.306-313
    • /
    • 2005
  • For seismic response analysis of rockfill dam, dynamic material properties, by field test, are needed. Density and elastic wave profiles have to be known to get an information of the material properties of structure. In this study, various field tests are applied to the example of rockfill dam to get an information of dynamic material properties and seismic safety is evaluated by seismic response analysis with the result of field tests.

  • PDF

지반-기초-구조물 상호작용을 고려한 말뚝 기초 구조물에서의 지진 하중 평가 (Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction)

  • 유민택;하정곤;조성배;김동수
    • 한국지진공학회논문집
    • /
    • 제18권3호
    • /
    • pp.125-132
    • /
    • 2014
  • In this study, a series of dynamic centrifuge tests were performed for a soil-foundation-structural interaction system in dry sand with various embedded depths and superstructure conditions. Sinusoidal wave, sweep wave and real earthquake were used as input motion with various input acceleration and frequencies. Based on the results, a natural period and an earthquake load for soil-structure interaction system were evaluated by comparing the free-field and foundation accelerations. The natural period of free field is longer than that of the soil-foundation-structure system. In addition, it is confirmed that the earthquake load for soil-foundation-structure system is smaller than that of free-field in short period region. In contrast, the earthquake load for soil-foundation-structure interaction system is larger than that of free-field in long period region. Therefore, the current seismic design method, applying seismic loading of free-field to foundation, could overly underestimate seismic load and cause unsafe design for long period structures, such as high-rise buildings.

시간영역에서 가우스뉴튼법을 이용한 탄성파 파형역산 (Time Domain Seismic Waveform Inversion based on Gauss Newton method)

  • 신동훈;박창업
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2006년도 공동학술대회 논문집
    • /
    • pp.131-135
    • /
    • 2006
  • 본 논문에서는 가우스 뉴튼법을 이용한 중합전 탄성파 자료의 파형역산에 관한 연구를 수행하였다. 탄성파 파형역산에 가우스 뉴튼법을 적용하는 방법은 80년대에 제시되었으나 최근 들어서야 활발히 연구가 진행되고 있는데 이는 연산 능력과 기억용량의 한계에 기인한 것이다. 이를 극복하기 위해 본 연구에서는, 파동 전파 수치모의와 역산과정에서 각각 다른 크기의 격자간격을 사용하고, 필요한 시간영역의 파동전파 모사와 가상 진원의 근사를 통해 편미분 파형을 계산하였으며, 효과적으로 슈퍼컴퓨터를 활용하기 위해 병렬처리 기법을 사용하였다. 수치모의를 통해, 가우스 뉴튼법을 이용한 파형 역산의 수렴속도가 빠르고 정확한 것을 알 수 있었으며, 이를 통해 본 연구에서 제시한 방법의 실제 탄성파 자료를 이용한 역산에의 적용가능성을 확인하였다.

  • PDF

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • 제4권5호
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가 (Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test)

  • 전법규;장성진;김남식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

연약지반조사를 위한 전기비저항 탄성파 Flat DMT 장비의 개발 및 적용 (Development of Resistivity Seismic Flat Dilatometer Testing System for Characterizing Soft Soil Site)

  • 방은석;성낙훈;김영상;박삼규;김정호;김동수
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.251-256
    • /
    • 2007
  • The aim of this paper is development of resistivity seismic dilatometer (RSDMT) system. The resistivity module for obtaining apparent resistivity depth plot and seismic module for obtaining shear wave velocity (Vs) depth plot are attached to the conventional flat dilatometer testing equipment. From shear wave velocity profile, the stiffness at low strains of a site can be evaluated in undisturbed condition. And the resistivity value contains some information about water content and mineral characteristics of clayey soil. Specially manufactured resistivity and seismic modules were connected between commercialized DMT blade and drilling rod. To enhance reliability and repeatability of RSDMT test, automatic testing system including notebook based data acquisition system and automatic surface source system were developed. RSDMT system can be performed rapidly and can obtaine more reliable data at the same point compared with the separated testing system. The verification studies for the developed RSDMT system are going to be performed. From these studies, the effectiveness of integrated hybrid testing system will be checked in light of proper evaluation of geotechnical design parameters of clayey soils.

  • PDF

진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가 (Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test)

  • 전법규;장성진;김남식
    • 한국소음진동공학회논문집
    • /
    • 제21권7호
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

탄성파 및 비저항 동시측정에 의한 수포화 암석시료에 주입된 $CO_2$ 모니터링 및 탐지 (Monitoring and detecting $CO_2$ injected into water-saturated sandstone with joint seismic and resistivity measurements)

  • 김종욱;마츠오카 토시후미;설자구
    • 지구물리와물리탐사
    • /
    • 제14권1호
    • /
    • pp.58-68
    • /
    • 2011
  • 전기 및 탄성파 탐사를 이용한 이산화탄소 지중저장의 모니터링의 기초연구로써, 수포화 암석시료에 $CO_2$주입시 비저항과 P파속도를 측정하였다. 암석시료는 Berea사암이며, $CO_2$는 초임계상태 (10 MPa, $40^{\circ}C$)로 주입하였다. 초임계 $CO_2$주입에 의해 비저항의 증가 및 P파속도와 진폭이 감소하였다. P파 속도 토모그램은 암석시료에 주입한 초임계 $CO_2$의 거동양상을 보여주었다. 비저항과 탄성파속도는 $CO_2$거동 모니터링하는데 유용하다. 그러나 P파 속도는 비저항 변화에 비해 $CO_2$포화도가 20% 이상 일때 변화를 보이지 않았다. 비저항으로부터 $CO_2$포화도 예측은 탄성파 속도로부터 $CO_2$포화도 예측의 어려움을 보완할 수 있다. 비저항과 탄성파 속도의 동시측정에 의해 암석시료에 주입한 초입계 $CO_2$ 거동 및 $CO_2$포화도 분포를 예측할 수 있다.