• Title/Summary/Keyword: Seismic strengthening

Search Result 212, Processing Time 0.036 seconds

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.

Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns (콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.411-422
    • /
    • 2017
  • In this study, to investigate the seismic performance of beam-column joints using concrete-encased and -filled circular steel tube(CEFT) columns, two types of tests were performed: (1) column - flange tension test and (2) beam - column joint cyclic load test. In column - flange tension test, test parameters were concrete encasement and connection details: flange width and strengthening rebar. Five specimens were tested to investigate the load-carrying capacity and the failure mode. Test results showed that increase of flange width from 200mm to 350mm result in increase of connection strength and stiffness by 61% and 56%, respectively. Structural performances were further improved with addition of tensile rebars by 35% and 92%, respectively. In cyclic loading test, three exterior beam-column joints were prepared. Test parameters were strengthening details including additional tensile rebars, thickened steel tube, and vertical plate connection. In all joint specimens, flexural yielding of beam was occurred with limited damages in the connection regions. In particular, flexural capacity of beam-column joint was increased due to additional load transfer through tube - beam web connection. Also, connection details such as increase of tube thickness and using vertical plate connection were effective in improving the resistance of panel zone.

A Study of the Improvement Plan and Real Condition Estimation of Fire Protection Safety Management for Power Plants in Korea (국내발전소 소방안전관리 운영실태조사 및 개선방안에 관한 연구)

  • Kang, Gil-Soo;Choi, Jae-wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • The Fukushima Nuclear Disaster in 2011 and California Power Failure in 2001 are examples of the importance of the power plant safety management that caused huge national loss with a power-related mass casualty incident. In a situation where humans cannot live without electricity, efforts to strengthen the systematic firefighting safety management in power plants that produce electricity with large amounts of hazardous materials as fuel, such as nuclear energy, coal and gas, are essential to protect life and prevent property loss and stable economic growth from fire explosion accident or radiation leak due to the negligence of safety management and natural disasters such as earthquakes, which has recently become an issue. This study examined the operating situation of firefighting safety management in power plants with firefighting officials employed by five power generation companies including Korea Southern Power Co., Ltd. and Korea Hydro & Nuclear Power Co. Ltd., which are in charge of the domestic power supply. As a result, for the systematic firefighting safety management of power plants, improvement plans were drawn, including the development of an effective business manual and a comprehensive management system, the substantiality of firefighting safety education, and the strengthening of seismic designs to prepare for earthquakes.

Hysteretic characteristics of steel plate shear walls: Effects of openings

  • Ali, Mustafa M.;Osman, S.A.;Yatim, M.Y.M.;A.W., Al Zand
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.687-708
    • /
    • 2020
  • Openings in steel plate shear walls (SPSWs) are usually used for decorative designs, crossing locations of multiple utilities and/or structural objectives. However, earlier studies showed that generating an opening in an SPSW has a negative effect on the cyclic performance of the SPSW. Therefore, this study proposes tripling or doubling the steel-sheet-plate (SSP) layer and stiffening the opening of the SPSW to provide a solution to undesirable opening effects, improve the SPSW performance and provide the infill option of potential strengthening measures after the construction stage. The study aims to investigate the impact of SSP doubling with a stiffened opening on the cyclic behaviour, expand the essential data required by structural designers and quantify the SPSW performance factors. Validated numerical models were adopted to identify the influence of the chosen parameters on the cyclic capacity, energy dissipation, ductility, seismic performance factors (SPF) and stiffness of the suggested method. A finite Element (FE) analysis was performed via Abaqus/CAE software on half-scale single-story models of SPSWs exposed to cyclic loading. The key parameters included the number of SSP layers, the opening size ratios corresponding to the net width of the SSP, and the opening shape. The findings showed that the proposed assembly method found a negligible influence in the shear capacity with opening sizes of 10, 15, 20%. However, a deterioration in the wall strength was observed for openings with sizes of 25% and 30%. The circular opening is preferable compared with the square opening. Moreover, for all the models, the average value of the obtained ductility did not show substantial changes and the ultimate shear resistance was achieved after reaching a drift ratio of 4.36%. Additionally, the equivalent sectional area of the SSP in the twin and triple configuration of the SPSWs demonstrated approximately similar results. Compared with the single SSP layer, the proposed configuration of the twin SSP layer with a stiffened opening suggest to more sufficiency create SSP openings in the SPSW compared to that of other configurations. Finally, a tabular SPF quantification is exhibited for SPSWs with openings.

Investigation of shear transfer mechanisms in repaired damaged concrete columns strengthened with RC jackets

  • Achillopoulou, D.V;Karabinis, A.I
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.575-598
    • /
    • 2013
  • The study presents the results of an experimental program concerning the shear force transfer between reinforced concrete (RC) jackets and existing columns with damages. In order to investigate the effectiveness of the repair method applied and the contribution of each shear transfer mechanism of the interface. It includes 22 concrete columns (core) (of 24,37MPa concrete strength) with square section (150mm side, 500 mm height and scale 1:2). Ten columns had initial construction damages and twelve were subjected to initial axial load. Sixteen columns have full jacketing at all four faces with 80mm thickness (of 31,7MPa concrete strength) and contain longitudinal bars (of 500MPa nominal strength) and closed stirrups spaced at 25mm, 50mm or 100mm (of 220MPa nominal strength). Fourteen of them contain dowels at the interface between old and new concrete. All columns were subjected to repeated (pseudo-seismic) axial compression with increasing deformation cycles up to failure with or without jacketing. Two load patterns were selected to examine the difference of the behavior of columns. The effects of the initial damages, of the reinforcement of the interface (dowels) and of the confinement generated by the stirrups are investigated through axial- deformation (slip) diagrams and the energy absorbed diagrams. The results indicate that the initial damages affect the total behavior of the column and the capacity of the interface to shear mechanisms and to slip: a) the maximum bearing load of old column is decreased affecting at the same time the loading capacity of the jacketed element, b) suitable repair of initially damaged specimens increases the capacity of the jacketed column to transfer load through the interface.

Compressive and Adhesive Strengths of Mortars using Re-emulsification Type Polymer and Ultra-Rapid-Hardening Cement (재유화형 분말수지와 초속경 시멘트를 혼입한 모르타르의 압축강도 및 접착강도 특성)

  • Lee, Kwang-Il;Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.329-335
    • /
    • 2018
  • The objective of this study is to develop a mortar mixture with high workability and adhesive strength for section jacketing in seismic strengthening technology of existing concrete structures. To achieve targeted requirements of the mortars (initial flow exceeding 200 mm, compressive strength of 30MPa, and adhesive strength exceeding 1MPa), step-by-step tests were conducted under the variation of the following mixture parameters: water-to-binder ratio, sand-to-binder ratio, polymer-to-binder ratio, dosage of viscosity agent, and content of ultra-rapid-hardening cement. The adhesive strength of the mortars was also estimated with respect to the various surface treatment states of existing concrete. Based on the test results, the mortar mixture with the polymer-to-binder ratio of 10% and the content of ultra-rapid-hardening cement of 5% can be recommended for the section jacketing materials. The recommended mortar mixture satisfied the targeted requirements as follows: initial flow of 220 mm, high-early strength gain, 28-day compressive strength of 35MPa, and adhesive strength exceeding 1.2MPa.

Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor (탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과)

  • Sim, Jong-Sung;Lee, Kang-Seok;Kwon, Hyuck-Woo;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • This paper presents a new strengthening method on concrete column against seismic loads for structural performance tests. An X-bracing using high performance carbon fiber threads called the "Carbon fiber anchor X-bracing system" is used to connect RC frames internally. The carbon fiber sheet is wrapped around the column to fix the top and bottom of the column after Super anchor was installed by drilling hole on the column. The structural performance was evaluated experimentally and analytically. Two types of columns specimens were made; flexure fracture scaled model and shear fracture scaled model. For the performance evaluation, cyclic loading tests were conducted on moment and shear resisting columns with and without X bracing. Test results confirmed that the bracing system installed on RC columns enhanced the strength capacity and provided adequate ductility.

An Experimental Study on the Flexural Behavior of Reinforced Concrete Columns Strengthened with Wire Rope and T-Shape Steel Plate units (와이어로프와 T형 플레이트에 의해 보강된 RC 기둥의 휨 거동에 대한 실험적 연구)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Oh, Sung-Jin;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.153-156
    • /
    • 2008
  • The objective of the present study is to evaluate the flexural behavior of reinforced concrete columns externally strengthened with wire rope and T-shape steel plate units. Three strengened columns and a control unstrengthened column were tested under cyclic lateral load simultaneously subjected to a constant axial load. All columns had same section size, and the arrangement of longitudinal reinforcement and internal hoop. The spacing of wire rope range from 40 ${\sim}$ 80mm, which corresponds from 1.0 ${\sim}$ 0.5, respectively, times the minium amount of hoop specified in seismic design of ACI 318-05. Test results showed that the proposed unbonded-type strengthening procedure is very effective for improving the flexural ductility of reinforced concrete columns.

  • PDF

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers

  • Verki, Amir Masoumi;Preciado, Adolfo
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.169-184
    • /
    • 2022
  • The importance of seismicity in developing countries and the strengthening of buildings is a topic of major importance. Therefore, the study of several solutions with the development of new technologies is of great importance to investigate the damage on retrofitted structures by using probabilistic methods. The Federal Emergency Management Agency considers three types of performance levels by considering different scenarios, intensity and duration. The selection and scaling of ground motions mainly depends on the aim of the study. Intensity-based assessments are the most common and compute the response of buildings for a specified seismic intensity. Assessments based on scenarios estimate the response of buildings to different earthquake scenarios. A risk-based assessment is considered as one of the most effective. This research represents a practical method for developing countries where exists many active faults, tall buildings and lack of good implementable approaches. Therefore, to achieve the main goal, two high-rise steel buildings have been modeled and assessed. The contribution of buckling-restrained braces in the elastic design of both buildings is firstly verified. In the nonlinear static range, both buildings presented repairable damage at the central top part and some life safety hinges at the bottom. The nonlinear incremental dynamic analysis was applied by 15 representative/scaled accelerograms to obtain levels of performance and fragility curves. The results shown that by using probabilistic methods, it is possible to estimate the probability of collapse of retrofitted buildings by buckling-restrained braces and tuned mass dampers, which are practical retrofitting options to protect existing structures against earthquakes.