• 제목/요약/키워드: Seismic retrofitted

검색결과 235건 처리시간 0.021초

내부 매입형 철골조로 보강된 철근콘크리트 건물의 내진 성능평가 (Seismic Performance Evaluation of Reinforced Concrete Buildings Strengthened by Embedded Steel Frame)

  • 김선웅;이경구
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2020
  • This study is to investigate the effect of a retrofitted reinforced concrete frame with non-seismic details strengthened by embedded steel moment frames with an indirect joint, which mitigates the problems of the direct joint method. First, full-scale experiments were conducted to confirm the structural behavior of a 2-story reinforced concrete frame with non-seismic details and strengthened by a steel moment frame with an indirect joint. The reinforced concrete frame with non-seismic details showed a maximum strength of 185 kN at an overall drift ratio of 1.75%. The flexural-shear failure of columns was governed, and shear cracks were concentrated at the beam-column joints. The reinforced concrete frame strengthened by the embedded steel moment frames achieved a maximum strength of 701 kN at an overall drift ratio of 1.5% so that the maximum strength was about 3.8 times that of the specimen with non-seismic details. The failure pattern of the retrofitted specimen was the loss of bond strength between the concrete and the rebars of the columns caused by a prying action of the bottom indirect joint because of lateral force. Furthermore, methods are proposed for calculation of the specified strength of the reinforced concrete frame with non-seismic details and strengthened by the steel moment frame with the indirect joint.

Comparative assessment of seismic rehabilitation techniques on a full scale 3-story RC moment frame structure

  • Di Ludovico, M.;Balsamo, A.;Prota, A.;Manfredi, G.
    • Structural Engineering and Mechanics
    • /
    • 제28권6호
    • /
    • pp.727-747
    • /
    • 2008
  • In the framework of the SPEAR (Seismic PErformance Assessment and Rehabilitation) research Project, an under-designed three storey RC frame structure, designed to sustain only gravity loads, was subjected, in three different configurations 'as-built', Fiber Reinforced Polymer (FRP) retrofitted and rehabilitated by reinforced concrete (RC) jacketing, to a series of bi-directional pseudodynamic (PsD) tests under different values of peak ground acceleration (PGA) (from a minimum of 0.20g to a maximum of 0.30g). The seismic deficiencies exhibited by the 'as-built' structure after the test at PGA level of 0.20g were confirmed by a post - test assessment of the structural seismic capacity performed by a nonlinear static pushover analysis implemented on the structure lumped plasticity model. To improve the seismic performance of the 'as-built' structure', two rehabilitation interventions by using either FRP laminates or RC jacketing were designed. Assumptions for the analytical modeling, design criteria and calculation procedures along with local and global intervention measures and their installation details are herein presented and discussed. Nonlinear static pushover analyses for the assessment of the theoretical seismic capacity of the structure in each retrofitted configuration were performed and compared with the experimental outcomes.

Effectiveness of rocking walls system in seismic retrofit of vertically irregular RC buildings

  • Tadeh Zirakian;Omid Parvizi;Mojtaba Gorji Azandariani;David Boyajian
    • Steel and Composite Structures
    • /
    • 제52권5호
    • /
    • pp.543-555
    • /
    • 2024
  • This study examines the seismic vulnerability of vertically irregular reinforced concrete (RC) frame buildings, focusing on the effectiveness of retrofitting techniques such as rocking walls (RWs) in mitigating soft story mechanisms. Utilizing a seven-story residential apartment as a prototype in a high-seismicity urban area, this research performs detailed nonlinear simulations to evaluate both regular and irregular structures, both before and after retrofitting. Pushover and nonlinear time history analyses were conducted using OpenSees software, with a suite of nine ground motion records to capture diverse seismic scenarios. The findings indicate that retrofitting with RWs significantly improves seismic performance: for instance, roof displacements at the Collapse Prevention (CP) level decreased by up to 23% in the irregular structure with retrofitting compared to its non-retrofitted counterpart. Additionally, interstory drift ratios were more uniform post-retrofit, with Drift Concentration Factor (DCF) values approaching 1.0 across all performance levels, reflecting reduced variability in seismic response. The global ductility of the retrofitted buildings improved, with displacement ductility ratios increasing by up to 29%. These results underscore the effectiveness of RWs in enhancing global ductility, mitigating soft story failures, and providing a more predictable deformation pattern during seismic events. The study thus provides valuable insights into the robustness and cost-effectiveness of using rocking walls for retrofitting irregular RC buildings.

보수 및 보강요소를 이용한 RC 부재의 비탄성 해석 (Inelastic Analysis of RC Members Using Repair and Retrofitted Element)

  • 이도형
    • 지구물리
    • /
    • 제9권4호
    • /
    • pp.301-310
    • /
    • 2006
  • 본 연구에서는 손상된 철근콘크리트 구조부재의 내진성능을 검토하기 위하여 탄소성 보수 및 보강요소를 개발하였다. 개발된 요소는 저하된 강도 및 강성의 상태를 유지한 부재상태에 보수 및 보강에 의한 특성치들의 증가분에 대한 효과를 반영할 수 있다. 이 요소는 활성시작시간과 활성끝시간을 갖는 요소로서 정적시간이력해석이나 동적시간이력해석의 경우, 사용자가 원하는 시간간격 내에서 자유롭게 활성화를 시킬 수 있다. 보수 및 보강된 철근콘크리트 부재에 대한 비교해석이 수행되었고, 개발된 요소를 이용한 해석결과는 실험결과와 비교하여 만족할만한 상관관계를 나타내었다. 즉, 본 연구에서 개발된 요소는 보수 및 보강된 철근콘크리트 부재의 내진수행능력 산정에 유용한 자료를 제공할 수 있을 것으로 사료된다.

  • PDF

Nonlinear model of reinforced concrete frames retrofitted by in-filled HPFRCC walls

  • Cho, Chang-Geun;Ha, Gee-Joo;Kim, Yun-Yong
    • Structural Engineering and Mechanics
    • /
    • 제30권2호
    • /
    • pp.211-223
    • /
    • 2008
  • A number of studies have suggested that the use of high ductile and high shear materials, such as Engineered Cementitious Composites (ECC) and High Performance Fiber Reinforced Cementitious Composites (HPFRCC), significantly enhances the shear capacity of structural elements, even with/without shear reinforcements. The present study emphasizes the development of a nonlinear model of shear behaviour of a HPFRCC panel for application to the seismic retrofit of reinforced concrete buildings. To model the shear behaviour of HPFRCC panels, the original Modified Compression Field Theory (MCFT) for conventional reinforced concrete panels has been newly revised for reinforced HPFRCC panels, and is referred to here as the HPFRCC-MCFT model. A series of experiments was conducted to assess the shear behaviour of HPFRCC panels subjected to pure shear, and the proposed shear model has been verified through an experiment involving panel elements under pure shear. The proposed shear model of a HPFRCC panel has been applied to the prediction of seismic retrofitted reinforced concrete buildings with in-filled HPFRCC panels. In retrofitted structures, the in-filled HPFRCC element is regarded as a shear spring element of a low-rise shear wall ignoring the flexural response, and reinforced concrete elements for beam or beam-column member are modelled by a finite plastic hinge zone model. An experimental study of reinforced concrete frames with in-filled HPFRCC panels was also carried out and the analysis model was verified with correlation studies of experimental results.

In-plane seismic performance of masonry wall retrofitted with prestressed steel-bar truss

  • Hwang, Seung-Hyeon;Kim, Sanghee;Yang, Keun-Hyeok
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.459-469
    • /
    • 2020
  • An external prestressed steel-bar truss unit was developed as a new strengthening technology to enhance the seismic performance of an in-plane masonry wall structure while taking advantage of the benefits of a prestressed system. The presented method consists of six steel bars: two prestressed vertical bars to introduce a prestressing force on the masonry wall, two diagonal bars to resist shear deformation, and two horizontal bars to maintain the configuration. To evaluate the effects of this new technique, four full-scale specimens, including a control specimen, were tested under combined loadings that included constant-gravity axial loads and cyclic lateral loads. The experimental results were analyzed in terms of the shear strength, initial stiffness, dissipated energy, and strain history. The efficiency of the external prestressed steel-bar truss unit was validated. In particular, a retrofitted specimen with an axial load level of 0.024 exhibited a more stable post behavior and higher energy dissipation than a control specimen with an observed complete sliding failure. The four vertical bars of the adjacent retrofitting units created a virtual column, and their strain values did not change until they reached the peak shear strength. The shear capacity of the masonry wall structure with external prestressed steel-bar truss units could be predicted using the model suggested by Yang et al.

교량의 내진보강 우선순위를 이용한 합리적인 보강방안 선정기법 (Retrofit Measures Based on Seismic Retrofit Priority of Existing Bridges)

  • 이상우;김상효
    • 한국지진공학회논문집
    • /
    • 제8권3호
    • /
    • pp.77-86
    • /
    • 2004
  • 본 연구에서는 교량의 내진보강방안을 합리적으로 결정하기 위하여 기존교량 및 보강된 교량의 지진하중에 대한 손상가능성을 이용하여 보강에 따른 내진성능 향상효과를 분석하였다. 교량의 내진보강에 따른 효과는 기존교량 및 보강된 교량에 대해 평가된 보강우선순위의 변화를 통하여 분석하였다. 이를 위하여 본 연구에서는 선행적으로 교량의 사용수명동안에 발생가능한 지진하중에 의한 지진취약부위의 손상확률과 손상으로 인해 예상되는 총 손실비용에 근거한 지진취약부위별 가중치를 이용하여 교량별 내진보강 우선순위를 결정할 수 있는 평가기법을 제안하였다. 제안된 평가기법의 타당성을 검증하기 위하여 다른 형식을 갖는 4개의 PSC 거더교를 대상으로 내진보강 우선순위를 평가하였다. 또한 각 지진취약부위별로 내진 보강된 교량에 대해 재평가된 순위지수를 기존교량에 대해 평가된 결과와 비교함으로써 각 교량별로 적용된 보강기법의 적합성을 검토하였다. 기존교량 및 보강된 교량에 대한 모의분석결과로부터 적용된 보강방안에 따라 해당취약부위의 손상가능성은 상당히 감소될 수 있으나 반면에 인접한 지진취약부위의 손상가능성은 증가되는 경향을 보이는 것으로 나타났다. 그러므로 기존교량에 대한 합리적인 보강방안을 결정하기 위해서는 내진보강에 따른 교량의 전체적인 거동특성변화에 따른 보강효과분석이 필수적으로 요구되며, 이는 본 연구에서 제안한 내진보강 우선순위 평가기법에 따라 기존교량 및 보강된 교량의 보강우선순위를 평가, 비교함으로써 효과적으로 수행될 수 있는 것으로 분석되었다.

Restrainer로 보강된 교량시스템의 지진거동분석 (Seismic Behavior Analysis of the Bridge Retrofitted by Restrainer)

  • 김상효;마호성;이상우;원정훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.289-296
    • /
    • 2000
  • Dynamic responses of a bridge retrofitted with cable restrainers are examined under seismic excitations. A simplified and idealized mechanical model is developed to analyze the effects of the restrainers, which can consider the plastic behavior as well as the fracture of the cable. Using the proposed model, the effects of the stiffness and the clearance length of the restrainer upon the global bridge seismic behaviors are estimated. The changes of pounding forces, shear forces, and bending moments due to the application of restrainers are also investigated. The main effect of restrainers upon global bridge motions is found to reduce the relative distances between adjacent vibrations units. It is also found that the relative distances are decreased as the clearance length of the restrainer decreases and the stiffness of restrainer increases.

  • PDF

볼트조립식 CFT 내진보강공법에 관한 실험적 연구 (Experimental Study on the Bolt Assembly type CFT Seismic Reinforcement Construction Method)

  • 강수진;이동운;윤정배;김용기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.6-7
    • /
    • 2020
  • The government of South Korea enacted Earthquake Recovery Plan Act in 2008. In order to meet the requirement of this law, the important buildings, such as schools, public offices and so on, are in the process of seismic retrofit. This paper introduces the experimental data about a non-retrofitted concrete column and retrofitted column with a bolt assembly type CFT(concrete-filled steel tube).

  • PDF

Aseismic protection of historical structures using modern retrofitting techniques

  • Syrmakezis, C.A.;Antonopoulos, A.K.;Mavrouli, O.A.
    • Smart Structures and Systems
    • /
    • 제4권2호
    • /
    • pp.233-245
    • /
    • 2008
  • For historical masonry structures existing in the Mediterranean area, structural strengthening is of primary importance due to the continuous earthquake threat that is posed on them. Proper retrofitting of historical structures involves a thorough understanding of their structural pathology, before proceeding with any intervention measures. In this paper, a methodology is presented for the evaluation of the actual state of historical masonry structures, which can provide a useful tool for the seismic response assessment before and after the retrofitting. The methodology is mainly focused on the failure and vulnerability analysis of masonry structures using the finite element method. Using this methodology the retrofitting of historical structures with innovative techniques is investigated. The innovative technique presented here involves the exploitation of Shape Memory Alloy prestressed bars. This type of intervention is proposed because it ensures increased reversibility and minimization of interventions, in comparison with conventional retrofitting methods. In this paper, a case study is investigated for the demonstration of the proposed methodologies and techniques, which comprises a masonry Byzantine church and a masonry Cistern. Prestressed SMA alloy bars are placed into the load-bearing system of the structure. The seismic response of the non-retrofitted and the retrofitted finite element models are compared in terms of seismic energy dissipation and displacements diminution.