• Title/Summary/Keyword: Seismic performance test

Search Result 885, Processing Time 0.028 seconds

Seismic Performance of Circular Columns considering Transverse Steel Details (횡방향철근 상세에 따른 원형기둥의 내진성능)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.259-266
    • /
    • 2000
  • This study was conducted to investigate the seismic behavior assessment of circular reinforcement concrete bridge piers particularly with regard to assessing the displacement ductility curvature ductility response modification factor(R) and plastic hinge region etc, The experimental variables of bridge piers test consisted of transverse steel details amount and spacing different axial load levels etc. The test results indicated that reinforcement concrete bridge piers with confinement steel by the code specification exhibited suffcient ductile behavior and seismic performance. Also it is found that current seismic design code specification of confinement steel requirements may be revised.

  • PDF

Pseudo-Dynamic Test for Seismic Performance Evaluation of RC Bridge Piers (실물 철근콘크리트 교각의 유사동적 실험에 의한 내진성능 평가)

  • 박창규;박진영;정영수;조대연
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.250-257
    • /
    • 2002
  • Pseudo dynamic test is an on-line computer control method to achieve the realism of shaking table test with the economy and versatility of the conventional quasi-static approach Pseudo dynamic tests of six full-size RC bridge piers have been carried out to investigate their seismic performance. For the purpose of precise evaluation, the experimental investigation was conducted to study the seismic performance of the real size specimen, which is constructed for highway bridge piers in Korean peninsula. Since it is believed that Korea belongs to the moderate seismicity region, five test specimens were designed in accordance with limited ductility design concept. Another one test specimen was nonseismically designed according to a conventional code. Important test parameters were transverse reinforcement and lap splicing. Lap splicing was frequently used in the plastic hinge region of many bridge columns. Furthermore, the seismic design code is not present about lap splice in Korean Roadway Bridge Design Code. The results show that specimens designed according to the limited ductility design concept exhibit higher seismic resistance. Specimens with longitudinal steel lap splice in the plastic hinge region appeared to significantly fail at low ductility level.

  • PDF

Evaluation on Seismic Performance of Limited Ductile RC Bridge Piers by Pseudo-Dynamic Test

  • Chung, Young-Soo;Park, Jong-Heob;Cho, Chang-Beck;Seo, Joo-Won
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.3-9
    • /
    • 2001
  • Pseudo dynamic test for seven circular RC bridge piers has been carried out to investigate their seismic performance subjected to expected artificial earthquake motions. The objective of this experimental study is to investigate the hysteretic behavior of reinforced concrete bridge piers, which have been widely used for railway and urban transportation facilities. Important test parameters are confinement steel ratio, and input ground motion. The seismic behavior of circular RC bridge piers under artificial ground motions has been evaluated through displacement ductility, cumulative energy input, and dissipation capacity. It can be concluded that RC bridge piers designed in a limited ductile behavior provision of Eurocode 8 have been determined to show good seismic performance even under moderate artificial earthquakes.

  • PDF

Pseudo Dynamic Test for the Seismic Performance Enhancement of Circular RC Bridge Piers Retrofitted with Fibers (섬유보강 원형 철근콘크리트 교각의 내진성능 향상에 관한 유사동적 실험)

  • 정영수;박종협;박희상;조창백
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.180-189
    • /
    • 2002
  • The objective of this experimental research is to assess the seismic performance of circular RC bridge pier specimens retrofitted with fibers which were designed as a prototype of Hagal bridge in the city of Suwon, Korea. Pseudo dynamic test has been done for four(4) test specimens which were nonseismically or seismically designed by the related provisions of the Korea roadway bridge design specification, and four nonseisemic test specimens retrofitted with fibers in the plastic hinge region. Glass and carbon fiber sheets were used for the seismic capacity enhancement of circular test specimens. Important test parameters were confinement steel ratio, load pattern, and retrofitting. The seismic behavior has been analyzed through the displacement ductility, energy analysis, and capacity spectrum. Approximate 7.7 ∼8.7 displacement ductility was observed for nonseismic test specimens retrofitted with fibers subjected to Korea Highway Cooperation artificial earthquake motions. It is concluded that these retrofitted test specimens could have sufficient seismic capacity in the region of moderate seismic zone.

Ductility and Seismic Performance of Spirally Reinforced Bridge Columns (나선철근 원형교각의 연성 및 내진성능)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.356-363
    • /
    • 2000
  • The objectives of this study are to investigate seismic performance of spirally reinforced bridge columns and to provide test result for developing improved seismic design criteria. Quasi-static test was conducted for 12 columns of which variables were transverse reinforcement ratio and spacing, longitudinal reinforcement ratio, and axial load level. Sufficient seismic performance was observed from the test for the columns with greater confinement steel amount than the requirement of the Korean Bridge Design Specification. The columns with 0.84% of the confinement steel requirement provided adequate performance under less than 0.2 of axial load level, but showed lower ductility under 0.3 of axial load level. The current provision for the region of confinement steel distribution may be non-conservative under high axial load level, therefore a modified provision is proposed.

  • PDF

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity (강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.

Seismic Performance Evaluation of Non-seismic T-bar type Steel-Panel Suspended Ceiling using Shaking Table Test (비내진 상세를 갖는 금속마감패널 천장시스템의 진동대 실험을 통한 내진성능평가)

  • Lee, Jae-Sub;In, Sung-Woo;Jung, Dam-I;Lee, Doo-Yong;Lee, Sang-Hyen;Cho, Bong-Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.171-180
    • /
    • 2019
  • In Korea, the seismic design of non-structural elements was interested by Earthquake of the 2016 Gyeong-ju and 2017 Po-hang. Among the non-structural elements, the ceiling system with steel panel used in Po-hang station showed failure examples of non-seismic design ceiling. In this study, the seismic performance of suspended ceiling with steel-panel, such as those used in Po-hang Station, was evaluated by shaking table tests. The shaking table tests were performed in accordance with the ICC-ES AC156 standard with floor acceleration being applied horizontally in one direction using a $3.3{\times}3.3m^2$ frame. The ceiling system consists of steel-panels, carrying channels, main and cross T-bars, and anti-falling clips. The anti-falling clip prevents the steel panel falling completely. The shaking table test confirmed that the damage at the previous stage had a direct impact on the damage state at the next stage. Through the shaking table test, the damage state of the T-bar type steel-panel suspended ceiling system was defined.

Seismic Performance of an Existing Low-Rise Reinforced Concrete Piloti Building Retrofitted by Steel Rod Damper (강봉댐퍼로 보강한 기존 저층 철근콘크리트 필로티 건물의 내진성능)

  • Baek, Eun Lim;Oh, Sang Hoon;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.241-251
    • /
    • 2014
  • In this study, shaking table test was carried out to evaluate the seismic behavior and performance of low-rise reinforced concrete (RC) piloti structures with and without retrofit. The specimens were designed considering the characteristics of existing building with pilotis such as natural period, distribution factor of strength and stiffness between columns and core wall on the first soft story. The test for the non-retrofit specimen showed that damage was concentrated on the stiffer member on the same floor as the core wall failed by shear fracture whereas columns experienced slight flexural cracks. Considering the failure mode of the non-retrofit specimen, the retrofit method using steel rod damper was presented for improving the seismic performance of piloti structures. The results of the test for retrofit specimen revealed that the retrofit method was effective for controlling the damage as the main RC structural members were not destroyed and most of input energy was dissipated by hysteretic behavior of the damper.