• Title/Summary/Keyword: Seismic performance objective

Search Result 203, Processing Time 0.027 seconds

Developing Fragility Curves for Concrete Bridges Retrofitted with Steel Jacketing (Steel Jacket으로 보강된 콘크리트 교량에 대한 지진취약도 개발)

  • Kim, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.75-83
    • /
    • 2003
  • The ultimate goal of this research is to improve highway system performance in earthquakes by evaluating the effectiveness of retrofitting bridges with column jacketing. The objective of the study is to determine if steel jacketing increases the ductility capacity of bridge columns and hence improves the fragility characteristics of the bridge. Analytical fragility curves are used to adjust the empirical fragility curves obtained for the unretrofitted bridges using seismic damage data collected following past earthquakes. The adjustment was carried out by increasing the median values of the empirical curves through comparison with the median values of the corresponding fragility curves obtained analytically, both before and after being retrofit.

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

Optimization of domes against instability

  • Ye, Jihong;Lu, Mingfei
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.427-438
    • /
    • 2018
  • Static stability is a decisive factor in the design of domes. Stability-related external factors, such as load and supports, are incorporated into structural vulnerability theory by the definition of a relative rate of joint well-formedness ($r_r$). Hence, the instability mechanism of domes can be revealed. To improve stability, an optimization model against instability, which takes the maximization of the lowest $r_r$ ($r_{r,min}$) as the objective and the discrete member sections as the variables, is established with constraints on the design requirements and steel consumption. Optimizations are performed on two real-life Kiewitt-6 model domes with a span of 23.4 m and rise of 11.7 m, which are initially constructed for shaking table collapse test. Well-formedness analyses and stability calculation (via arc-length method) of the models throughout the optimization history demonstrate that this proposed method can effectively enhance $r_{r,min}$ and optimize the static stability of shell-like structures. Additionally, seismic performance of the optimum models subjected to the same earthquake as in the shaking table test is checked. The supplemental simulations prove that the optimum models are superior to the original models under earthquake load as well.

Mechanical properties of reinforced-concrete rocking columns based on damage resistance

  • Zhu, Chunyang;Cui, Yanqing;Sun, Li;Du, Shiwei;Wang, Xinhui;Yu, Haochuan
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.737-747
    • /
    • 2021
  • The objective of seismic resilience is to maintain or rapidly restore the function of a building after an earthquake. An efficient tilt mechanism at the member level is crucial for the restoration of the main structure function; however, the damage resistance of the members should be the main focus. In this study, through a comparison with the classical Flamant theory of local loading in the elastic half-space, an elastomechanical solution for the axial-stress distribution of a reinforced-concrete (RC) rocking column was derived. Furthermore, assuming that the lateral displacement of the rocking column is determined by the contact surface rotation angle of the column end and bending and shear deformation of the column body, the load-lateral displacement mechanical model of the RC rocking column was established and validated through a comparison with finite-element simulation results. The axial-compression ratio and column-end strength were analyzed, and the results indicated that on the premise of column damage resistance, simply increasing the axial-compression ratio increases the lateral loading capacity of the column but is ineffective for improving the lateral-displacement capacity. The lateral loading and displacement of the column are significantly improved as the strength of the column end material increases. Therefore, it is feasible to improve the working performance of RC rocking columns via local reinforcement of the column end.

Performance Evaluation of Connection of Seismic Rectangular Steel Tube Column-H Beam Using One-side Bolts (원사이드 볼트를 이용한 내진 각형강관 기둥-H형강 보 접합부의 구조성능평가)

  • Shim, Hyun-Ju;Jang, Bo-Ra;Chung, Jin-An;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.355-363
    • /
    • 2010
  • The objective of this study is to examine the structural performance on the Rectangular Steel Tube Column-to-H Beam connections using one-side bolts and T-stub. Although a rectangular steel tube comparing with a H-shaped steel has many advantages and is more efficient, its application is limited due to the lack of experiences and connection details. Existing steel moment connections using the rectangular steel tube are mainly using through plate diaphragms. Its processing of construction is so complicated that it is hard to apply in the field. In this study, the structural performance and the earthquake capacity for T-stub connection with one-side bolts were investigated. And it is performed a comparative analysis of strength, rigidity, total rotation and energy absorption capacity for the various connection details.

GA-Based Optimal Design for Vibration Control of Adjacent Structures with Linear Viscous Damping System (선형 점성 감쇠기가 장착된 인접구조물의 진동제어를 위한 유전자 알고리즘 기반 최적설계)

  • Ok, Seung-Yong;Kim, Dong-Seok;Koh, Hyun-Moo;Park, Kwan-Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.11-19
    • /
    • 2007
  • This paper proposes an optimal design method of distribution and capacities of linear viscous dampers for vibration control of two adjacent buildings. The previous researches have dealt with suboptimal design problem under the assumption that linear viscous dampers are distributed uniformly or proportionally to the sensitivity of the modal damping ratio according to floors, whereas this study deals with global optimization problem in which the damping capacities of each floor are independently selected as design parameters. For this purpose, genetic algorithm to effectively search multiple design variables in large searching domains is adopted and objective function leading to the global optimal solutions is established through the comparison of several optimal design values obtained from different objective functions with control performance and damping capacity. The effectiveness of the proposed method is investigated by comparing the control performance and total damping capacity designed by the proposed method with those of the previous method. In addition, the time history analyses are performed by using three historical earthquakes with different frequency contents, and the simulation results demonstrate that the proposed method is an effective seismic design method for the vibration control of the adjacent structures.

Study of Integrated Optimal Design of Smart Top-Story Isolation and Building Structures in Regions of Low-to-Moderate Seismicity (중약진지역 구조물과 스마트 최상층 면진시스템의 통합최적설계에 대한 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2013
  • In order to reduce seismic responses of a structure, additional dampers and vibration control devices are generally considered. Usually, control performance of additional devices are investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a building structure with smart top-story isolation system has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions. The integrated optimal design method proposed in this study can provide various optimal designs that presents good control performance by appropriately reducing the amount of structural material and damping device.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines (콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발)

  • Jeong Jin-Ho;Kim Sung-Ban;Ahn Myung-Seok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The objective of this study is to propose curve fitted equations that can facilitate calculations and improve a practical applicability when the seismic performance of buried pipelines needs to be evaluated. The curve fitted equations are derived based on the evaluation of the dynamic responses of concrete pipe with a boundary condition of fixed-free ends. To study the dynamic response of underground pipe, the numerical analysis program developed in the previous research has been used. The location of maximum strain has been determined through dynamic analyses for a boundary condition of fixed-free ends. Then $wavelength{\lambda}$ of 5-1000(m) and propagation velocity(Vs) of 100-2000(m/s) have been applied at the location of maximum strain and the unit srain curve with the changes of the $wavelength{\lambda}$ and propagation velocity(Vs) has been obtaind. Non-linear least-square regression has been used to develop highly applicable curve fitted equations and various types of exponential regression equations have been checked out. Thus curve fitted equations and necessary coefficients with best results are suggested.

Beam-Column Element Applicable to Nonlinear Seismic Analysis (비선형 지진 해석을 위한 보-기둥 요소)

  • Kim, Kee Dong;Ko, Man Gi;Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.557-578
    • /
    • 1997
  • The objective of the study in this paper was to develop a beam-column element to model members with purely flexural yielding, as well as members with yielding under combined flexure and axial force during severe earthquake ground motins. The developed element can be considered as an one-component series hinge type model. It has the capability to model plastic axial deformation and changes in axial stiffness, and employs hardening rules to handle monotonic, cyclic or arbitrary loading. In general, when compared to experimental results and fiber model predictions, the element showed significantly better performance than the bilinear hinger model and could properly model the beam-column behavior of bare steel members in moment resisting frames. The developed element can more accurately predict local deformation demands and overall responses of structural systems under earthquake loadings than the bilinear hinge element.

  • PDF