• 제목/요약/키워드: Seismic modeling

검색결과 511건 처리시간 0.022초

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

불균질 매질에 따른 인공 합성 탄성파 자료 비교 (Comparison of synthetic seismograms referred to inhomogeneous medium)

  • 김영완;장성형;윤왕중;서상용
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.197-202
    • /
    • 2007
  • Most of seismic reflection prospecting assumes subsurface formation to be homogeneous media. These models are not capable of estimating small scale heterogeneity which is verified by well log data or drilling core. And those synthetic seismograms by homogeneous media are limited to explain various changes at field data. So we developed a inhomogeneous velocity model which can estimate inhomogeneity of background medium to implement numerical modeling from homogeneous medium and inhomogeneous medium on the model. Background medium using three autocorrelation functions in order to generate inhomogeneous velocity media was according to dominant wavelength of background medium and correlation length of random medium. And then we compared shot gathers. The results show that numerical modeling implemented at inhomogeneous medium depicts complex wave propagation of field data.

  • PDF

2차원 수치해석을 이용한 말뚝 지지구조물의 동적 원심모형실험 거동 모사 (2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure)

  • ;;김성렬
    • 한국지반공학회논문집
    • /
    • 제34권8호
    • /
    • pp.15-26
    • /
    • 2018
  • 최근, 성능기반 내진설계법이 도입되면서 동적수치해석을 수행하여 지진에 대한 구조물의 실제 거동을 엄밀히 평가하는 것이 필요해지고 있다. 성능기반설계를 수행하려면 수치해석 모델링의 적용성을 검증하는 것이 매우 중요하다. 그러므로, 본 연구에서는 2차원 수치해석을 수행하여 말뚝지지 구조물의 동적 거동을 분석하고 수치모델링 기법과 입력변수값 산정방법을 제안하였다. 수치모델링의 적용성은 느슨한 사질토 지반에 설치된 무리말뚝의 동적 원심모형실험 결과와 비교하여 검증하였다. 본 수치모델링은 동적 지반 물성값, 지반-말뚝 상호작용, 경계조건, 무리말뚝과 구조물의 모델링 등 원심모형실험의 실제 조건을 반영하도록 모델링하였다. 그 결과, 수치해석에서 얻어진 결과는 지반 내 가속도 변화, 말뚝의 모멘트와 변위, 그리고 구조물의 변위와 가속도 결과를 잘 모사하였다. 그러므로, 본 수치모델링 기법과 입력변수 산정기법이 무리말뚝의 내진성능을 평가할 때 유용하게 적용될 수 있을 것으로 판단된다.

Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA)

  • Moayedifar, Arsham;Nejati, Hamid Reza;Goshtasbi, Kamran;Khosrotash, Mohammad
    • Earthquakes and Structures
    • /
    • 제16권6호
    • /
    • pp.705-714
    • /
    • 2019
  • Seismic assessment of underground structures is one of the challenging problems in engineering design. This is because there are usually many sources of uncertainties in rocks and probable earthquake characteristics. Therefore, for decreasing of the uncertainties, seismic response of underground structures should be evaluated by sufficient number of earthquake records which is scarcely possible in common seismic assessment of underground structures. In the present study, a practical risk-based approach was performed for seismic risk assessment of an unsupported tunnel. For this purpose, Incremental Dynamic Analysis (IDA) was used to evaluate the seismic response of a tunnel in south-west railway of Iran and different analyses were conducted using 15 real records of earthquakes which were chosen from the PEER ground motion database. All of the selected records were scaled to different intensity levels (PGA=0.1-1.7 g) and applied to the numerical models. Based on the numerical modeling results, seismic fragility curves of the tunnel under study were derived from the IDA curves. In the next, seismic risk curve of the tunnel were determined by convolving the hazard and fragility curves. On the basis of the tunnel fragility curves, an earthquake with PGA equal to 0.35 g may lead to severe damage or collapse of the tunnel with only 3% probability and the probability of moderate damage to the tunnel is 12%.

Insights gained from applying negate-down during quantification for seismic probabilistic safety assessment

  • Kim, Ji Suk;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2933-2940
    • /
    • 2022
  • Approximations such as the delete-term approximation, rare event approximation, and minimal cutset upper bound (MCUB) need to be prudently applied for the quantification of a seismic probabilistic safety assessment (PSA) model. Important characteristics of seismic PSA models indicate that preserving the success branches in a primary seismic event tree is necessary. Based on the authors' experience in modeling and quantifying plant-level seismic PSA models, the effects of applying negate-down to the success branches in primary seismic event trees on the quantification results are summarized along with the following three insights gained: (1) there are two competing effects on the MCUB-based quantification results: one tending to increase and the other tending to decrease; (2) the binary decision diagram does not always provide exact quantification results; and (3) it is identified when the exact results will be obtained, and which combination provides more conservative results compared to the others. Complicated interactions occur in Boolean variable manipulation, approximation, and the quantification of a seismic PSA model. The insights presented herein can assist PSA analysts to better understand the important theoretical principles associated with the quantification of seismic PSA models.

Modeling of pile end resistance considering the area of influence around the pile tip

  • Hyodo, Junichi;Shiozaki, Yoshio;Tamari, Yukio;Ozutsumi, Osamu;Ichii, Koji
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.287-294
    • /
    • 2019
  • The finite element method (FEM) is widely used to evaluate the seismic performance of pile-supported buildings. However, there are problems associated with modeling the pile end resistance using the FEM, such as the dependence on the mesh size. This paper proposes a new method of modeling around the pile tip to avoid the mesh size effect in two-dimensional (2D) analyses. Specifically, we consider the area of influence around the pile tip as an artificial constraint on the behavior of the soil. We explain the problems with existing methods of modeling the pile tip. We then conduct a three-dimensional (3D) analysis of a pile in various soil conditions to evaluate the area of influence of the soil around the pile tip. The analysis results show that the normalized area of influence extends approximately 2.5 times the diameter of the pile below the pile tip. Finally, we propose a new method for modeling pile foundations with artificial constraints on the nodal points within the area of influence. The proposed model is expected to be useful in the practical seismic design of pile-supported buildings via a 2D analysis.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

Development of an Inversion Analysis Technique for Downhole Testing and Continuous Seismic CPT

  • Joh, Sung-Ho;Mok, Young-Jin
    • 한국지반공학회지:지반
    • /
    • 제14권3호
    • /
    • pp.95-108
    • /
    • 1998
  • 지반의 S파 및 P파의 깊이에 따른 변화를 원위치에서 측정하기 위하여 다운흘 시험 (downhole testing)과 SCPT (seismic CPT) 등이 널리 사용되어 왔다. 다운홀 시험과 SCPT는 경제성, 운용의 용이성, 발진원의 단순성 등의 측면에서 효율적이기 때문에, 현재 지반조사에서 그 사용빈도가 더욱 증가하고 있는 추세이다. 특히 최근에는 다운흘과 SCPT의 자료 분석을 자동화하기 위한 노력의 일환으로 interval measurements의 기법이 활용되고 있는데, 현재 이에 대한 적절한 역산해석 (inversion analysis) 기법이 없는 형편이다. 따라서, 본 논문에서는 다운홀이나 SCPT의 interval measurements를 분석하기 위한 새로운 역산해석 기법을 제안하였다. 제안된 역산해석 기법의 정모델링(forward modeling)에서는 탄성파의 전파를 Snell의 법칙에 의거하여 굴절.반사되는 현상을 고려하였곡, 역산해석을 위해서는 최대공산법 (maximum likelihood method)을 적용하였다. 그리고, 본 논문에서 제안한 역산해석 기법의 검증을 위하여, 하나의 S파 주상도를 가정하고 이에 대하여 다운흘 시험을 모사하였다. 이론적으로 수행한 다운홀 시험 결과에 대하여 기존의 비 역산해석 방법과 본 논문에서 제안한 역산해 석 기법에 의해서 S파 주상도를 추정하였는데, 그 결과 본 논문에서 제시한 역산기법이 가장 정확한 결과를 도출하였으며, 다운홀 시험과 SCPT을 자동화하는데 효율적으로 적용이 될 수 있음을 입증하였다.

  • PDF

Random Amplitude Variability of Seismic Ground Motions and Implications for the Physical Modeling of Spatial Coherency

  • Zerva, A.
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권2호
    • /
    • pp.139-150
    • /
    • 2001
  • An initial approach for the identification of physical causes underlying the spatial coherency of seismic ground motions it presented. The approach relies on the observation that amplitude and phase variability of seismic data recorded over extended areas around the amplitude and phase of a common, coherent component are correlated. It suffices then to examine the physical causes for the amplitude variability in the seismic motions, in order to recognize the causes for the phase variability and, consequently, the spatial coherency. In this study, the effect of randomness in the shear wave velocity at a site on the amplitude variability of the surface motions mi investigated by means of simulations. The amplitude variability of the simulated motions around the amplitude of the common component is contained within envelope functions, the shape of which suggests, on a preliminary basis, the trend of the decay of coherency with frequency.

  • PDF

Modeling the impact of corrosion rate of stirrups on seismic performance of reinforced concrete columns

  • Abbas Ghasemi;Mohamad Sobhani
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.183-192
    • /
    • 2023
  • It is essential to properly understand the seismic behavior of reinforced concrete (RC) columns confined by stirrups that experience different corrosion rates. The current study investigated the effect of seismic performance indicators such as strength loss, energy dissipation rate, ductility and hysteresis damping on specimens and models for different stirrup corrosion rates. Analysis revealed the adverse effects of corrosion on the bond performance between the concrete and steel bars which affected the seismic performance of the columns. It was found that with increasing corrosion rate, ductility and energy dissipation of the specimens decreased. Compared with the uncorroded specimen, the ductility factor and energy dissipation decreased observably, by 22.89% and 60.64%, respectively. An attenuation relationship is proposed for the corrosion rate of the stirrups for different stirrup yield strengths, concrete compressive strengths, concrete covers and stirrup spacing.