• Title/Summary/Keyword: Seismic measurements

Search Result 140, Processing Time 0.027 seconds

Analysis of Downhole Seismic Data Using Inversion Method (역산이론을 이용한 공내하향 탄성파시험 결과의 해석)

  • 목영진
    • Geotechnical Engineering
    • /
    • v.10 no.4
    • /
    • pp.29-38
    • /
    • 1994
  • A new method of analyzing downhole seismic data is presented. The method is based upon inverse theory and can be used to resolve wave velocity profiles to a much greater accuracy than possible with conventional analysis methods such as direct or interval measurements. In addition, use of inverse theory permits a rational basis for judging the quality of the velocity profile. Five case studies are presented to illustrate application of the inversion method at various geological formations.

  • PDF

Vulnerability assessment of strategic buildings based on ambient vibrations measurements

  • Mori, Federico;Spina, Daniele
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.115-132
    • /
    • 2015
  • This paper presents a new method for seismic vulnerability assessment of buildings with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. The method is based on the identification of experimental modal parameters from ambient vibrations measurements. The knowledge of the experimental modes allows to perform a linear spectral analysis computing the maximum structural drifts of the building caused by an assigned earthquake. Operational condition is then evaluated by comparing the maximum building drifts with the reference value assigned by the Italian Technical Code for the operational limit state. The uncertainty about the actual building seismic frequencies, typically significantly lower than the ambient ones, is explicitly taken into account through a probabilistic approach that allows to define for the building the Operational Index together with the Operational Probability Curve. The method is validated with experimental seismic data from a permanently monitored public building: by comparing the probabilistic prediction and the building experimental drifts, resulting from three weak earthquakes, the reliability of the method is confirmed. Finally an application of the method to a strategic building in Italy is presented: all the procedure, from ambient vibrations measurement, to seismic input definition, up to the computation of the Operational Probability Curve is illustrated.

Development of an Inversion Analysis Technique for Downhole Testing and Continuous Seismic CPT

  • Joh, Sung-Ho;Mok, Young-Jin
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.95-108
    • /
    • 1998
  • Downhole testing and seismic CPT (SCPT) have been widely used to evaluate stiffness profiles of the subgrade. Advantages of downhole testing and SCPT such as low cost, easy operation and a simple seismic source have got these testings more frequently adopted in site investigation. For the automated analysis of downhole testing and SCPT, the concept of interval measurements has been practiced. In this paper. a new inversion procedure to deal tilth the interval measurements for the automated downhole testing and SCPT (including a newlydeveloped continuous SCPT) is proposed. The forward modeling in the new inversion procedure incorporates ray path theory based on Snell's law. The formulation for the inversion analysis is derived from the maximum likelihood approach, which estimates the maximum likelihood of obtaining a particular travel time from a source to a receiver. Verification of the new inversion procedure was performed with numerical simulations of SCPT using synthesized profiles. The results of the inversion analyses performed for the synthetic data show that the new inversion analysis is a valid procedure which enhances Va profiles determined by downhole testing and SCPT.

  • PDF

Seismic Fragility Analysis Utilizing PDF Interpolation Technique (확률밀도함수 보간에 의한 교량의 지진취약도 분석)

  • ;;;Shigeru Kushiyama
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.495-502
    • /
    • 2003
  • This study proposed the Probability Density Function (PDF) interpolation technique to evaluate the seismic fragility curves as a function of the return period. Seismic fragility curves have been developed as a function of seismic intensities such as peak ground acceleration, peak pound velocity, and pseudo-velocity spectrum. The return period of design earthquakes, however, can be more useful among those seismic intensity measurements, because the seismic hazard curves are generally represented with a return period of design earthquakes and the seismic design codes also require to consider the return period of design earthquake spectrum for a specific site. In this respect the PDF interpolation technique is proposed to evaluate the seismic fragility curves as a function of return period. Seismic fragility curves based on the return period are compared with ones based on the peak ground acceleration for the bridge model.

  • PDF

Seismic characteristics of a Π-shaped 4-story RC structure with open ground floor

  • Karabini, Martha A.;Karabinis, Athanasios J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • v.22 no.4
    • /
    • pp.345-353
    • /
    • 2022
  • The configuration of an open ground floor (pilotis) is a common and very critical irregularity observed in multistory reinforced concrete frame structures. The characteristics and the geometrical formation of the beams of the first story proved to be a critical parameter for the overall seismic behavior of this type of Reinforced Concrete (RC) structures. In this work the combination of open ground floor (pilotis) morphology with very strong perimetrical beams at the level of the first story is studied. The observation of the seismic damages and the in situ measurements of the fundamental period of four buildings with this morphology and Π-shaped plan view are presented herein. Further analytical results of a pilotis type Π-shaped RC structure are also included in the study. From the measurements and the analytical results yield that the open ground floor configuration greatly influences the fundamental period whereas this morphology in combination with strong beams can lead to severe local shear damages in the columns of the ground floor. The structural damage was limited in the columns of the ground floor and yet based on the changes of the in situ measured fundamental period the damaged level is assessed as DI=88%. Furthermore, due to the Π-shape of the plan view the tendency of the parts of the building to move independently strongly influences the distribution of the damages over the ground floor vertical elements.

Seismic safety assessment of eynel highway steel bridge using ambient vibration measurements

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Ozdemir, Hasan
    • Smart Structures and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-154
    • /
    • 2012
  • In this paper, it is aimed to determine the seismic behaviour of highway bridges by nondestructive testing using ambient vibration measurements. Eynel Highway Bridge which has arch type structural system with a total length of 216 m and located in the Ayvaclk county of Samsun, Turkey is selected as an application. The bridge connects the villages which are separated with Suat U$\breve{g}$urlu Dam Lake. A three dimensional finite element model is first established for a highway bridge using project drawings and an analytical modal analysis is then performed to generate natural frequencies and mode shapes in the three orthogonal directions. The ambient vibration measurements are carried out on the bridge deck under natural excitation such as traffic, human walking and wind loads using Operational Modal Analysis. Sensitive seismic accelerometers are used to collect signals obtained from the experimental tests. To obtain experimental dynamic characteristics, two output-only system identification techniques are employed namely, Enhanced Frequency Domain Decomposition technique in the frequency domain and Stochastic Subspace Identification technique in time domain. Analytical and experimental dynamic characteristic are compared with each other and finite element model of the bridge is updated by changing of boundary conditions to reduce the differences between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of highway bridges. After finite element model updating, maximum differences between the natural frequencies are reduced averagely from 23% to 3%. The updated finite element model reflects the dynamic characteristics of the bridge better, and it can be used to predict the dynamic response under complex external forces. It is also helpful for further damage identification and health condition monitoring. Analytical model of the bridge before and after model updating is analyzed using 1992 Erzincan earthquake record to determine the seismic behaviour. It can be seen from the analysis results that displacements increase by the height of bridge columns and along to middle point of the deck and main arches. Bending moments have an increasing trend along to first and last 50 m and have a decreasing trend long to the middle of the main arches.

Optimal Use of Stress Waves in Non-Intrusive Seismic Techniques for Geotechnical Applications

  • Joh, Sung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.434-478
    • /
    • 2006
  • Stress waves have been used for geophysical and geotechnical applications for more than 50 years. The early-stage applications were simply based on travel-time measurements of stress waves and limited to site characterization. Currently stress-wave techniques are expanded to monitoring processes for grouting of damaged geotechnical structures, compaction of embankment, and deformational analyses for static geotechnical problems. Seismic techniques used to be good enough for rough estimators of engineering properties. Nowadays, the sophisticated modeling theory of stress-wave propagation substantially improved reliability and accuracy of the seismic techniques. In this paper, difficulties involved in currently available seismic techniques are discussed and analyzed. Herein some recently-developed non-intrusive seismic techniques, which make optimal use of stress waves for further improvement of reliability and accuracy, are also presented.

  • PDF

A PERFORMANCE ASSESSMENT OF A BASE ISOLATION SYSTEM FOR AN EMERGENCY DIESEL GENERATOR IN A NUCLEAR POWER PLANT

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.285-298
    • /
    • 2008
  • This study evaluates the performance of a coil spring-viscous damper system for the vibration and seismic isolation of an Emergency Diesel Generator (EDG) by measuring its operational vibration and seismic responses. The vibration performance of a coil spring-viscous damper system was evaluated by the vibration measurements for an identical EDG set with different base systems - one with an anchor bolt system and the other with a coil spring-viscous damper system. The seismic performance of the coil spring-viscous damper system was evaluated by seismic tests with a scaled model of a base-isolated EDG on a shaking table. The effects of EDG base isolation on the fragility curve and core damage frequency in a nuclear power plant were also investigated through a case study.

Development and Application of Penetration-type Bender Elements Probe for Stiffness Measurements of Soft Soils (연약지반의 강성도 측정을 위한 관입형 벤더 엘리먼트 프로브의 개발 및 적용)

  • Mok, Young-Jin;Jung, Jae-Woo;Kim, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.119-126
    • /
    • 2008
  • Ground stiffness(shear wave velocity) is one of the key parameters in geotechnical earthquake engineering. An In-situ seismic technique has its own advantages and disadvantages over the others in stiffness measurements. By combining the crosshole and seismic cone techniques and utilizing favourable features of bender elements, a new hybrid probe has been developed in order to enhance data quality and easiness of testing. The basic structure of the probe, called "MudFork", is a fork composed of two blades, on each of which source and receiver bender elements were mounted respectively. To evaluate the disturbance caused by the penetration of the probe, shear wave velocity measurements were carried out in the Kaolinite slurry in the laboratory. Finally, the probe was penetrated in coastal mud near Incheon, Korea, using SPT(standard penetration test)rods pushed with a routine boring machine and shear wave velocity measurements were carried out. The results were verified with data from laboratory and cone testing. The performance of the probe turns out to be excellent in terms of data quality and testing convenience.

  • PDF