• Title/Summary/Keyword: Seismic loading test

Search Result 488, Processing Time 0.023 seconds

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Shear Performance Evaluation of Cast-in Specialty Inserts in Cracked Concrete according to Cyclic Loading Patterns (반복하중 패턴에 따른 균열 콘크리트에 매입된 선설치 인서트 앵커의 전단성능 평가)

  • Jeong, Sang-Deock;Oh, Chang-Soo;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.53-60
    • /
    • 2023
  • Recently, a novel cast-in specialty insert was developed in Korea as an anchor for lightweight pipe supports, including fire-protection pipes. As these pipe supports and anchors play a critical role in transferring loads of fire-protection pipes to structural members, it is crucial to evaluate their seismic performance before applying the newly developed insert. In this study, the seismic shear performance of the insert anchors was evaluated through cyclic loading tests based on the loading protocols of ACI 355.2 and FEMA 461. Initially, five monotonic loading tests were conducted on the insert anchors in cracked concrete, followed by cyclic loading tests based on the monotonic test results. The findings revealed that the insert anchors exhibited negligible decrease in shear strength even after cyclic loading. Furthermore, a comparison of the maximum load and displacement of the insert anchors obtained under the loading protocols of ACI 355.2 and FEMA 461 was performed to investigate the applicability of the FEMA 461 loading protocol for anchor performance evaluation.

Experimental studies on steel frame structures of traditional-style buildings

  • Xue, Jianyang;Qi, Liangjie
    • Steel and Composite Structures
    • /
    • v.22 no.2
    • /
    • pp.235-255
    • /
    • 2016
  • This paper experimentally investigated the behavior of steel frame structures of traditional-style buildings subjected to combined constant axial load and reversed lateral cyclic loading conditions. The low cyclic reversed loading test was carried out on a 1/2 model of a traditional-style steel frame. The failure process and failure mode of the structure were observed. The mechanical behaviors of the steel frame, including hysteretic behaviors, order of plastic hinges, load-displacement curve, characteristic loads and corresponding displacements, ductility, energy dissipation capacity, and stiffness degradation were analyzed. Test results showed that the Dou-Gong component (a special construct in traditional-style buildings) in steel frame structures acted as the first seismic line under the action of horizontal loads, the plastic hinges at the beam end developed sufficiently and satisfied the Chinese Seismic Design Principle of "strong columns-weak beams, strong joints-weak members". The pinching phenomenon of hysteretic loops occurred and it changed into Z-shape, indicating shear-slip property. The stiffness degradation of the structure was significant at the early stage of the loading. When failure, the ultimate elastic-plastic interlayer displacement angle was 1/20, which indicated high collapse resistance capacity of the steel frame. Furthermore, the finite element analysis was conducted to simulate the behavior of traditional-style frame structure. Test results agreed well with the results of the finite element analysis.

Analysis of Hysteresis Characteristics of Buckling Restrained Brace According to Lateral buckling prevention Method (횡좌굴 방지방식에 따른 비좌굴가새의 이력특성 분석)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2023
  • Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Behavior of Solid Circular RC Piers without Seismic Detailing Subjected to Cyclic Lateral Load (수평 반복하중을 받는 비내진상세 RC 중실원형교각의 거동특성)

  • 김재관;김익현;임현우;전귀현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.83-95
    • /
    • 2001
  • Scale model tests were performed to investigate the seismic behavior and capacity of reinforced concrete piers that were not detailed for seismic load. The prototype pier is of solid circular section. Additional lateral reinforcing bars were not provided that might be required for the confinement. Two kinds of reinforcement details are considered for the vertical longitudinal reinforcing bars: lap spliced and continuous. In the case of lap spliced model all the longitudinal bars were lap spliced at the same height in the bottom plastic hinge zone. Three specimens were constructed and subjected to quasi-static cyclic lateral loading while the vertical load held constant. Non-ductile failure modes were observed in the test of lap spliced models but limited ductile behavior was observed in the test of a continuous longitudinal reinforcement model.

  • PDF

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

Experimental Capacity of Suspended Piping Trapeze Restraint Installations under Cyclic Loadings (반복하중을 받는 경량 배관 서포트 시스템에 대한 실험적 성능 평가)

  • Jeong, Sang-Deock;Oh, Chang-Soo;Park, Min Jae;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.79-86
    • /
    • 2023
  • Damage to gas and fire protection piping systems can lead to secondary disasters after an earthquake, so their seismic design is crucial. Accordingly, various types of seismic restraint installations are being devised, and a new suspended piping trapeze restraint installation has also recently been developed in Korea. In this study, a cyclic loading test was performed on the developed trapeze support system, and its performance was evaluated according to ASHRAE 171, the standard for seismic and wind restraint design established by the American Society of Refrigeration and Air Conditioning Engineers (ASHRAE). The three support system specimens did not break or fracture, causing only insignificant deformations until the end of the experiment. Based on the experimentally rated strength and displacement performance, this trapeze support system is expected to control the seismic movement of piping during an earthquake.

Cyclic Test of Shear Wall Damping Systems (전단벽 제진시스템의 반복가력실험)

  • Ahn, Tae Sang;Kim, Young Ju;Kim, Hyung Geun;Jang, Dong Woon;Choi, Kyoung Kyu;Kim, Jong Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The objective of conventional seismic design is to ensure an acceptable safety level while avoiding catastrophic failures of structures and loss of life. Over the last many years, a large amount of research has been devoted into developing effective earthquake resistant systems in order to raise the seismic performance level of structures. The purpose of this study is to propose a new damping system, which realize not only increasing seismic performance but also easy repairing after an earthquake. The proposed damping system is slit in the bottom of wall with damping devices installed in the slit horizontally aiming to dissipate energy during earthquakes. Cyclic loading tests were conducted to investigate hysteretic behavior and energy dissipation capacity. Test results show that the proposed systems exhibit a stable hysteretic response and the energy dissipation in this system is concentrated on the damping devices.

Static Cyclic Loading Test of the Seismic and Energy Simultaneous Retrofit Panel for Existing Unreinforced Masonry Buildings (기존 비보강 조적조 건축물의 내진 및 에너지 동시보강패널 정적반복가력실험)

  • Choi, Hyoung-Wook;Lee, Sang-Ho;Choi, Hyoung-Suk;Kim, Tae-Hyeong;Baek, Eun-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • A textile and capillary tube composite panel(TCP) was developed to simultaneously retrofit the seismic performance and the energy efficiency (e.g. heating or insulation performance) of existing unreinforced masonry (URM) buildings. TCP is a light-weight mortar panel in which carbon textile reinforcements and capillary tubes are embedded. Textile reinforcements plays a role of seismic retrofit and capillary tubes that hot water circulates contribute to the energy retrofit. In this paper, the static cyclic loading tests were performed on the masonry walls with/without TCP to understand the seismic retrofit effect of TCP retrofit and the results were summarized. The results of the test showed that the TCP contributed to increase the capacity of the Shear strength and ductility of the URM walls. In addition, the deformation of the wall after cracking was substantially controlled by the carbon textile.