• Title/Summary/Keyword: Seismic isolation design

Search Result 246, Processing Time 0.03 seconds

Effect of Bouc-Wen Model and Earthquake Characteristics for Responses of Seismically Isolated Nuclear Power Plant by Lead-Rubber Bearing (납-고무 받침에 의해 면진된 원전구조물의 응답에 대한 Bouc-Wen 모델 및 지진특성의 영향)

  • Song, Jong-Keol;Son, Min-Kyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2017
  • In order to modeling seismic isolation system such as lead-rubber bearing (LRB), bilinear model is widely used by many researchers. In general, an actual force-displacement relationship for LRB has a smooth hysteretic shape. So, Bouc-Wen model with smooth hysteretic shape represents more accurately actual hysteretic shape than bilinear model. In this study, seismic responses for seismically isolated nuclear power plant (NPP) with LRB modelled by Bouc-Wen and bilinear models are compared with those of NPP without seismic isolation system. To evaluate effect of earthquake characteristics for seismic responses of NPP isolated by LRB, 5 different site class earthquakes distinguished by Geomatrix 3rd Letter Site Classification and artificially generated earthquakes corresponding to standard design spectrum by Reg. Guide 1.60 are used as input earthquakes. From the seismic response results of seismically isolated NPP, it can be observed that maximum displacements of seismic isolation modelled by Bouc-Wen model are larger than those by bilinear model. Seismic responses of NPP with LRB is significantly reduced than those without LRB. This reduction effect for seismic responses of NPP subjected to Site A (rock) earthquakes is larger than that to Site E (soft soil) earthquakes.

Design of Base Isolated Building Considering Performance Based Design (구조성능 목표를 고려한 면진설계)

  • Hwang, Kee-Tae;Lee, Hyun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.700-703
    • /
    • 2004
  • The purpose of this study is to present the design methodology of base isolated buildings. To achieve the goal of this study, time-history analysis was performed with seismic performance level and recorded seismic data. From the analysis results of MDOF system, the maximum. displacement and base shear were evaluated as 25 cm and $4\%$ by the input level which is maximum velocity of 50 kine. By introducing hybrid isolation system, seismic energy can be concentrated consequently high seismic capacity of the total building is secured.

  • PDF

Experimental Study on Vertical Reduction Effectiveness of Main Control Room of NPP using 3-Dimensional Isolation System (원전 주제어실 삼차원 면진시스템 수직방향 저감효과 시험연구)

  • Ham, Kyung-Won;Lee, Kyung-Jin;Suh, Yong-Pyo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.417-423
    • /
    • 2006
  • The seismic characteristics with 3-Dimensional isolation systems have been studied using a shaking table system. In this study, we made nuclear power plant main control room floor systems and several seismic shaking table tests with and without isolation systems were conducted to evaluate floor isolation effectiveness. Isolation systems have showed large reduction effectiveness in acceleration and response spectra with x and z direction respectively, but horizontal isolation is more effective than vertical one It is required to make isolation systems of which design frequency is below 1Hz when applied to main control room of NPP, but considering much difficulties in making such isolation systems, it is recommended that much consideration should be taken into account when applied to main control room of NPP.

  • PDF

Structural Design of Mid-Story Isolated High-Rise Building - Roppongi Grand Tower

  • Nakamizo, Daiki;Koitabashi, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.233-242
    • /
    • 2018
  • Since the response reduction effect on over 200-meter-tall resulting from the seismic isolation system is smaller in general than low-rise and mid-rise buildings, mid-story isolated buildings are considered to reduce the response in the upper part above the isolation story, however, in many cases, the acceleration response just below the isolation story is likely to be the largest. This paper presents the structural design schemes, the design of the main structural frames, and the constructions of a 230-meter-tall super high-rise building with mid-story isolation mechanism integrated in Roppongi, Tokyo. Moreover, this paper shows how the architectural and structural design for integrating a mid-story isolation system in a super high-rise building has been conducted and what solutions have been derived in this project. The realization of this building indicates new possibilities for mid-story isolation design for super high-rise buildings.

Development of Seismic Isolation Device with LRB and Shock Transmission Units and Its Verification Tests (LRB 댐퍼 조합형 지진격리장치 개발 및 특성평가실험)

  • 서주원;김남식;임진석;유문식
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.383-390
    • /
    • 2002
  • The new seismic isolation system (StLRB) is developed, which can separate non-seismic displacements which come from the thermal expansion etc. in LRB design. The StLRB has 3 components, sliding system (PTFE + stainless plate), LRB (lead rubber bearing) and STU (shock transmit units). In this project, the StLRB is designed to apply to the bridge structure by analyzing the characteristics of each component and also the dynamic behavior of the structure was analyzed by non-linear analysis. The verification test was performed to show the two stages separated by STU units. Test results show the effectiveness of both the separation and the seismic isolation performance.

  • PDF

Seismic Response Analysis of Rectangular Tank with Base-Isolation System (구형 면진유체저장조의 지진시 거동해석)

  • 전영선;최인길;황신일;김진웅
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.107-113
    • /
    • 1995
  • Spent fuel storage pool should maintain its structural integrity and the safety of stored spent fuels against design earthquake load. In this study, the seismic response analysis of the pool with LRB isolation system is performed for two different earthquakes. To investigate the seismic response of the base isolated pool, the analysis results are compared with the responses of conventional type. In conclusion, the base-isolation system is effective to reduce the seismic forces transmitted to the superstructure and the responses, and to secure the safety of the storage pool and stored spent fuel.

  • PDF

Finite Element Analysis and Design of a Lead-Rubber-Bearing System for Seismic Isolation (면진 LRB(Lead Rubber Bearing) 시스템의 유한요소 해석 및 설계)

  • 송우진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.229-232
    • /
    • 1999
  • The seismic isolation technology has appeared to be increasingly necessary for highway brides LNG tank nuclear power plant and building structures in view of recent frequent earthquake vibrations in Korea. Also high-technology industries required effective seismic protection. The LRB(Lead Rubber Bearing) systen has been counted as the most effective way for seismic isolation which is now under development and widely used in industries. Hear the commercial FEM software for nonlinear analysis MARC has provided force-displacement curves on the rubber system. The analysis has been carried out about four cases ; 29.5mm and 59mm horizontal dislacements with/without a center hole. The unknown constants of the strain energy function of Ogden model have been obtained by a tension test,

  • PDF

Seismic Isolation Systems Incorporating with RC Core Walls and Precast Concrete Perimeter Frames -Shimizu Corporation Tokyo Headquarter-

  • Shimazaki, Dai;Nakagawa, Kentaro
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.3
    • /
    • pp.181-189
    • /
    • 2015
  • Shimizu Corporation Tokyo Headquarters, one of the city's leading office buildings, features many pioneering technologies that contribute to a sustainable society through environmental stewardship and a sophisticated disaster management facility. In terms of structural engineering, a seismic isolation system incorporating reinforced concrete core walls and precast concrete perimeter frames create a robust structure in the event of a large earthquake. In addition to the seismic resistance of the structure, several pioneering construction methods and materials are adopted. This office building can serve as a basis for new design and construction approaches and methodologies to ensure safe and economical structures.

Evaluation of Seismic Buckling Load for Seismically Isolated KALIMER Reactor Vessel (면진설계된 KALIMER 원자로용기의 지진좌굴 특성평가)

  • 구경회
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.220-227
    • /
    • 1999
  • The Purpose of this paper is to evaluate the buckling strength of conceptually designed KALIMER reactor vessel. For evaluation of the buckling load buckling load the design equations and the finite element analysis are used. In finite element method the eigenvalue buckling analysis nonlinear elastic buckling analysis using snap-through buckling method and nonlinear elastic-plastic buckling analysis are carried out. the calculated buckling loads of KALIMER reactor vessel using the finite element method are in well agreement with those of the design equations. From the calculated results of buckling load in KALIMER rector vessel it is shown that the plasticity of vessel materials significantly affects the buckling load but the initial imperfection has little effects, In checking the limits of bucking load of KALIMER reactor vessel using the ASME B & PV Section III. Subsection NH the non-seismic isolation design can not satisfy the buckling limit requirements but the seismic isolation design can sufficiently satisfy the requirements.

  • PDF

Seismic Design of Bridges Using Base Isolation (기초분리방법을 이용한 교량 내진 설계)

  • 황의승
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.107-116
    • /
    • 1991
  • Base isolation is the alternative tool to protect structures against the earthquake. Basic ideas are the flexibflity to reduce the response of the structure, energy dissipation to reduce the excessive deflection by flexibility, and the rigidity under the service load. Base isolation is specially good for bridges because it can be installed easily and be used for both new construction and rehabilitation. This paper describes the basic ideas of base isolation, various base isolation devices and design guidelines by AASHTO. It also introduces the applications in United States and New Zealand.

  • PDF