• 제목/요약/키워드: Seismic guidelines

검색결과 166건 처리시간 0.03초

Development of classification criteria for non-reactor nuclear facilities in Korea

  • Dong-Jin Kim;Byung-Sik Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.792-799
    • /
    • 2023
  • Non-reactor nuclear facilities are increasing remarkably in Korea combined with advanced technologies such as life and space engineering, and the diversification of the nuclear industry. However, the absence of a basic classification guideline related to the design of non-reactor nuclear facilities has created confusion whenever related projects are carried out. In this paper, related domestic and international technical guidelines are reviewed to present the classification criteria of non-reactor nuclear facilities in Korea. Based on these criteria, the classification of structures, systems and components (SSCs) for safety controls is presented. Using the presented classification criteria, classification of a hot cell facility, a representative non-reactor nuclear facility, was performed. As a result of the classification, the hot cell facility is classified as the hazard category 3, accordingly, the safety class was classified as non-nuclear safety, the seismic category as non-seismic (RW-IIb), and the quality class as manufacturers' standards (S).

지진 위험도를 고려한 도로 교통망의 내진보강 우선순위 결정 (Retrofit Prioritization of Highway Network considering Seismic Risk of System)

  • 나웅진;박태원
    • 한국지진공학회논문집
    • /
    • 제12권6호
    • /
    • pp.47-53
    • /
    • 2008
  • 본 논문은 캘리포니아지역에 위치한 고속도로망을 대상으로 하여, 도로망내에 있는 교량의 내진보강 우선순위를 결정하는 방법에 관한 연구이다. 내진보강 우선순위 결정은 지진공학 분야에서 매우 중요한 이슈 중의 하나이며, 정부나 도로 관리청의 의사결정권자는 예산 배정 과정에서 이와 같은 문제에 항상 직면하게 된다. 본 연구는 특정지역의 고속도로망을 대상으로 어떻게 내진보강 우선순위를 결정할 것인가에 관한 방법론을 보여주고 있다. 우선순위 결정을 위하여 구조물의 지진 취약도, 도로망상에 위치한 각각 연결로의 중요도에 대한 개념이 먼저 소개되었다. 도로망상 각각의 교차로를 잇는 연결로를 지진 보강의 대상 단위로 하여 도로망의 내진 성능에 대한 시뮬레이션을 수행하였으며, 추가 소요되는 교통 지체시간을 각각의 시뮬레이션 경우에 대하여 측정함으로써 내진보강에 의한 효과를 평가하였다. 또한, 지진 위험도의 확률적인 특성을 반영하기 위하여 확률론적 시나리오 지진을 도입하였다. 본 연구의 결과에서 알 수 있듯이 우선순위의 의미는 이해관계자의 주요 관심 사항에 따라 다르게 정의될 수 있고, 각각 다른 우선순위 결과를 보여주게 된다. 본 연구는 교통망의 효과적인 내진보강을 위한 우선순위 결정 과정에 도움이 될 수 있는 일반적인 지침을 제공할 것으로 기대된다.

사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안 (Guidelines of Designing Lead Rubber Bearing for a Cable-Stayed Bridge In Control Seismic Response)

  • 이성진;박규식;김춘호;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.509-516
    • /
    • 2003
  • In tile design of base isolation system for building and short-span bridge, shift of the natural period of the structure is main objective. But, most long-span bridges such as a cable-stayed bridges have a number of long-period modes due to their flexibility and small structural damping. thus the design concept of base isolation system for building and short-span brigde may be difficult to use directly to these structures. However, the effectiveness of LRB for cable-stayed bridges is indicated by Ali and Abdel-Ghaffar. In this study, the design procedure and guidelines of LRB for a seismically excited cable-stayed bridge are investigated. The design properties of LRB are chosen that the design index(DI) is minimized or little changed for variation of properties. This result show that the stiffer rubber and bigger lead core size are need to cable-stayed bridges. And the seismic performance of designed LRB is also investigated. The consequences show that the perforamnce of designed LRB is better than that of Naeim-Kelly mettled designning LRB for general building structures. Moreover, the design properties of LRB are researched to several diffrent dominant frequency of earthquake. The results present that the plastic and elastic stiffness of LRB are affected by the dominant frequency of earthquake.

  • PDF

Shaking Table Model Test of Shanghai Tower

  • Lu, Xilin;Mao, Yuanjun;Lu, Wensheng;Kang, Liping
    • 국제초고층학회논문집
    • /
    • 제2권1호
    • /
    • pp.79-83
    • /
    • 2013
  • Shaking table test is an important and useful method to help structural engineers get better knowledge about the seismic performance of the buildings with complex structure, just like Shanghai tower. According to Chinese seismic design guidelines, buildings with a very complex and special structural system, or whose height is far beyond the limitation of interrelated codes, should be firstly studied through the experiment on seismic behavior. To investigate the structural response, the weak storey and crack pattern under earthquakes of different levels, and to help the designers improve the design scheme, the shaking table model tests of a scaled model of Shanghai tower were carried out at the State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China. This paper describes briefly the structural system, the design method and manufacture process of the scaled model, and the test results as well.

지표물리탐사 기법을 이용한 FRP보강 그라우팅 공법의 보강효과 확인에 관한 사례연구 (A Study on Verification of the FRP Grouting Effect using 2D Resistivity Survey and Seismic Refraction Methods)

  • 박종호;한현희;채휘영;김익희;조현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.199-206
    • /
    • 2000
  • The grout-effect evaluation of the ground reinforcement technique, which has been widely applied to civil engineering and construction fields, is not established for the guidelines of choosing the efficient evaluation method, and in fact the experts have little effort to determine the reinforcement effect quantitatively. The evaluation of the grout was carried out by experiments on core specimen and drilling, which is impossible to evaluate grout-reinforcement effect quantitatively. This paper presents an example on verification of FRP grout-effect using geophysical prospecting on ground surface, which is 2D resistivity survey that easily visualize survey results with color graphics and seismic refraction method that interprets the subsurface seismic velocity structure.

  • PDF

Effects of sheds and cemented joints on seismic modelling of cylindrical porcelain electrical equipment in substations

  • Li, Sheng;Tsang, Hing-Ho;Cheng, Yongfeng;Lu, Zhicheng
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.55-65
    • /
    • 2017
  • Earthquake resilience of substations is essential for reliable and sustainable service of electrical grids. The majority of substation equipment consists of cylindrical porcelain components, which are vulnerable to earthquake shakings due to the brittleness of porcelain material. Failure of porcelain equipment has been repeatedly observed in recent earthquakes. Hence, proper seismic modelling of porcelain equipment is important for various limit state checks in both product manufacturing stage and detailed substation design stage. Sheds on porcelain core and cemented joint between porcelain component and metal cap have significant effects on the dynamic properties of the equipment, however, such effects have not been adequately parameterized in existing design guidelines. This paper addresses this critical issue by developing a method for taking these two effects into account in seismic modelling based on numerical and analytical approaches. Equations for estimating the effects of sheds and cemented joint on flexural stiffness are derived, respectively, by regression analyses based on the results of 12 pieces of full-scale equipment in 500kV class or higher. The proposed modelling technique has further been validated by shaking table tests.

Strain-based seismic failure evaluation of coupled dam-reservoir-foundation system

  • Hariri-Ardebili, M.A.;Mirzabozorg, H.;Ghasemi, A.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.85-110
    • /
    • 2013
  • Generally, mass concrete structural behavior is governed by the strain components. However, relevant guidelines in dam engineering evaluate the structural behavior of concrete dams using stress-based criteria. In the present study, strain-based criteria are proposed for the first time in a professional manner and their applicability in seismic failure evaluation of an arch dam are investigated. Numerical model of the dam is provided using NSAD-DRI finite element code and the foundation is modeled to be massed using infinite elements at its far-end boundaries. The coupled dam-reservoir-foundation system is solved in Lagrangian-Eulerian domain using Newmark-${\beta}$ time integration method. Seismic performance of the dam is investigated using parameters such as the demand-capacity ratio, the cumulative inelastic duration and the extension of the overstressed/overstrained areas. Real crack profile of the dam based on the damage mechanics approach is compared with those obtained from stress-based and strain-based approaches. It is found that using stress-based criteria leads to conservative results for arch action while seismic safety evaluation using the proposed strain-based criteria leads to conservative cantilever action.

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

Investigation of seismic performance of a premodern RC building typology after November 26, 2019 earthquake

  • Marsed Leti;Huseyin Bilgin
    • Structural Engineering and Mechanics
    • /
    • 제89권5호
    • /
    • pp.491-505
    • /
    • 2024
  • This study evaluates the seismic performance of a premodern six story reinforced concrete building typology designed during the communism period of Albania and build throughout the country. During the November 26, 2019 Earthquake in Albania, the most affected reinforced concrete buildings were among the old templates, lacking shear walls and inadequate reinforcement details which suffer from concrete aging. The mathematical model of the selected building is done in the environments of ZeusNL software, developed especially for earthquake engineering applications. The capacity curve of the structure is gained using the conventional static nonlinear analysis. On the other hand, the demand estimation is utilized using one of the recent methods known as Incremental Dynamic Analysis with a set of 18 ground motion records. The limit states in both curves are defined based on the modern guidelines. For the pushover, immediate occupancy (IO), life safety (LS) and collapse prevention (CP) are plotted in the same graph with capacity curve. Furthermore, on each IDA derived, the IO, CP and global instability (GI) are determined. Moreover, the IDA fractiles are generated as suggested by the literature, 16%, 50% (median) and 84%. In addition, the comparative assessment of the IDA median with capacity curve shows good correlation points. Lastly, this study shows the approach of determination of LS in IDA fractiles for further vulnerability assessment based on the local seismic hazard map with 95 and 475 return period.

지반 비선형성을 고려한 다경간 연속교의 지진취약도 (Seismic Vulnerabilities of a Multi-Span Continuous Bridge Considering the Nonlinearity of the Soil)

  • 선창호;이종석;김익현
    • 한국지진공학회논문집
    • /
    • 제14권3호
    • /
    • pp.59-68
    • /
    • 2010
  • 기존 구조물의 내진보강을 경제적으로 수행 위해서는 내진성능을 보다 정확하게 평가하는 것이 필요하다. 우리나라 도로교의 내진성능은 "기존교량의 내진성 평가 요령"에 의해 평가되고 있으며, 이는 이를 활용할 당시 기술자의 기술수준을 고려하여 비교적 간단한 방법이 채택되었다. 최근에는 입력지진의 불확실성을 고려하여 내진성능을 확률적으로 평가하는 연구가 많이 수행되고 있다. 일반적으로 구조물은 지반의 영향을 무시하고 모델화되거나 때로는 지반을 탄성스프링으로 모델화하여 응답에 대한 지반의 영향을 고려하고 있다. 그러나 지반도 지진시 비선형특성을 나타내므로 교량의 응답특성을 보다 정확하게 평가하기 위해서는 이를 고려할 필요가 있다. 본 연구에서는 지진세기에 따른 지반의 비선형성을 등가의 선형스프링으로 모델화하여 6경간연속교를 대상으로 하여 지진해석을 수행하였으며, 교각의 파괴 및 낙교에 대한 지진취약도의 특성변화를 확률적으로 평가하였다.