• Title/Summary/Keyword: Seismic evaluation

Search Result 1,588, Processing Time 0.025 seconds

Seismic Margin Analysis of Reinforced Concrete Pier Using Damage Model Proceedings (손상모형을 이용한 철근 콘크리트 교각의 지진여유도 해석)

  • 고현무;이지호;정우영;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.220-227
    • /
    • 2002
  • This study introduces the fragility analysis method for the safety evaluation of reinforced concrete pier subject to earthquake. Damage probability is calculated instead of the failure probability from definition of the damage state in the fragility curve. Not only the damage model determined by the response of structure subject to earthquake, but also the plastic-damage model which can represent the local damage is applied to fragility analysis. The evaluation method of damage state by damage variable in global structure is defined by this procedure. This study introduces the fragility analysis method considering the features of nonlinear time history behavior of reinforced concrete element and the plastic behavior of materials. At last, This study gives one of the approach method for seismic margin evaluation with the result of fragility analysis to design seismic load.

  • PDF

Evaluation of Dynamic Characteristics of the Box Beam of HANARO Reactor Pool (하나로 원자로 수조내 사각보의 동특성 평가)

  • Kim, Seong-Ho;Dan, Ho-Jin;Ryu, Jeong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.525-525
    • /
    • 2005
  • This study is for the seismic analysis and the structural integrity evaluation of the box beam for supporting nuclear fuel-transfer-basket of the HANARO reactor pool. For performing the seismic analysis and evaluating the structural integrity in air or submerged condition, the finite element model of the fuel-transfer-basket and its supporting box beam(the coupled model) was developed. The hydrodynamic effect is also considered by using added mass concept. The seismic response spectrum analyses of the coupled model under the design floor response spectrum loads of Safe Shutdown Earthquake(SSE) were performed. Through the numerical experiments, the analysis results show that the stress values of the coupled model lot the structural integrity are within the ASME Code limits.

  • PDF

Earthquake safety assessment of an arch dam using an anisotropic damage model for mass concrete

  • Xue, Xinhua;Yang, Xingguo
    • Computers and Concrete
    • /
    • v.13 no.5
    • /
    • pp.633-648
    • /
    • 2014
  • The seismic safety of concrete dams is one of the important problems in the engineering due to the vast socio-economic disasters which may be caused by collapse of these infrastructures. The accuracy of the risk evaluation associated with these existing dams as well as the efficient design of future dams is highly dependent on a proper understanding of their behaviour due to earthquakes. This paper develops an anisotropic damage model for arch dam under strong earthquakes. The modified Drucker-Prager criterion is adopted as the failure criteria of the dynamic damage evolution of concrete. Some process fields and other necessary information for the safety evaluation are obtained. The numerical results show that the seismic behaviour of concrete dams can be satisfactorily predicted.

Seismic Evaluation of Ordinary Moment Concrete Frames Using Capacity Spectrum Method (지반특성과 지진지역에 따른 보통모멘트 골조의 내진성능 평가)

  • 권건업;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.947-952
    • /
    • 2001
  • This study is to evaluate seismic performance of ordinary moment concrete frames. Base shear and roof displacement relations are obtained from the experiment of 3 story ordinary moment resisting concrete frame. The frame was designed only for gravity loads. The performance of the building is evaluated using capacity spectrum method. Five different seismic zones and three different soil types are considered. For each condition of seismic zone and soil type, ten earthquake ground motions are used to establish the demand spectrum.

  • PDF

Seismic characteristics of Tectonic Provinces of The Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.64-71
    • /
    • 1999
  • Seismicity of the Korean Peninsula shows intraplate seismicity that has irregular pattern in both time and space. Seismic data of the Korean peninsula consists of historical earthquakes and instrumental earthquakes. In this study we devide these data into complete part and incomplete part and considering earthquake size uncertainty estimate seismic hazard parameters - activity rate λ, b value of Gutenberg-Richter relation and maximum possible earthquake IMAX by statistical method in each major tectonic provinces. These estimated values are expected to be important input parameters in probabilistic seismic hazard analysis and evaluation of design earthquake.

  • PDF

An Performance Evaluation of Seismic Retrofitted Column Using FRP Composite Reinforcement for Rapid Retrofitting (긴급시공이 가능한 FRP 복합재료 보강재로 보강된 기둥의 내진성능평가)

  • Kim, Jin-Sup;Seo, Hyun-Su;Lim, Jeong-Hee;Kwon, Min-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.47-55
    • /
    • 2014
  • As increasing number of large-size earthquake around Korean peninsula, many interests have been focused to the earthquake strengthening of existing structures. The brittle fracture of Non-seismic designed columns lead to full collapse of the building. In the past, cross-sectional extension method, a steel plate reinforcing method and fiver-reinforced method are applied to Seismic Rehabilitation Technique mainly. However, the reinforcement methods have drawbacks that induce physical damage to structures, large space, long duration time. So, in this study, performance evaluation of previously developed FRP seismic reinforcement which do not induce physical damage and short duration time was enforced. The specimens were constructed with 80% downscale. FRP seismic reinforcement are manufactured of glass fiber or aluminum plate with holes and glass fiber. From the experiment results, seismic performance of specimens which reinforced with FRP seismic reinforcement were increased.

Seismic Performance Evaluation of a Mid-rise General Hospital Building (중층 종합병원 건물의 내진성능평가)

  • Kim, Taewan;Chu, Yurim;Kim, Seung Rae
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.5
    • /
    • pp.245-254
    • /
    • 2017
  • The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.

Reliable Evaluation of Dynamic Ground Properties from Cross-hole Seismic Test using Spying-loaded Lateral Impact Source (스프링식 횡방항 발진 크로스홀 탄성파 시험을 통한 지반 동적 특성의 합리적 산정)

  • Sun, Chang-Guk;Mok, Young-Jin;Chung, Choong-Ki;Kim, Myoung-Mo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.1-13
    • /
    • 2006
  • Soil and rock dynamic properties such as shear wave velocity $(V_s)$, compressional wave velocity $(V_p)$ and corresponding Poisson's ratio (v) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as $V_s,\;V_p$ and v with depth from the soil surface to the engineering and seismic bedrock were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.