• Title/Summary/Keyword: Seismic data processing

Search Result 178, Processing Time 0.023 seconds

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.

Hyperparameter Search for Facies Classification with Bayesian Optimization (베이지안 최적화를 이용한 암상 분류 모델의 하이퍼 파라미터 탐색)

  • Choi, Yonguk;Yoon, Daeung;Choi, Junhwan;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.157-167
    • /
    • 2020
  • With the recent advancement of computer hardware and the contribution of open source libraries to facilitate access to artificial intelligence technology, the use of machine learning (ML) and deep learning (DL) technologies in various fields of exploration geophysics has increased. In addition, ML researchers have developed complex algorithms to improve the inference accuracy of various tasks such as image, video, voice, and natural language processing, and now they are expanding their interests into the field of automatic machine learning (AutoML). AutoML can be divided into three areas: feature engineering, architecture search, and hyperparameter search. Among them, this paper focuses on hyperparamter search with Bayesian optimization, and applies it to the problem of facies classification using seismic data and well logs. The effectiveness of the Bayesian optimization technique has been demonstrated using Vincent field data by comparing with the results of the random search technique.

A Study on the Parameter Determination of Crustal Movement by Geodetic Technique (측지학적 방법에 의한 지각변동 매개변수 결정에 관한 연구)

  • 조규전;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.405-414
    • /
    • 2001
  • Plate tectonics is a dominant paradigm in modern geophysics. Because of its geological mechanism, Korea has a possibility of earthquake according to plate motion. Besides the disaster of earthquake grows rapidly, the importance of recognition for earthquake has been emphasized. This study attempts to decide crustal movement parameters with GPS data, analysed baseline after processing data with GIPSY-OASIS II S/W, observed from 6 stations in and around the Korean peninsula, and obtained from selected 11 stations in Korea. As a results, maximum shear strain was $0.04{\mu}/yr$ and the mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $97.75^{\circ}$ in and around the Korean peninsula. The average rate of the maximum shear strain($({\gamma}_max)$) is $0.17{\mu}/yr$. The mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $70.25^{\circ}$ in Korea. Such a pattern of strain distribution is harmonious with that of seismic activity in Korea both historically as well as today.

  • PDF

Borehole Image Processing System(BIPS)를 이용한 사면 안정성 해석

  • Yu, Byeong-Ok;Kim, Byeong-Seop
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.111-129
    • /
    • 2002
  • Generally, investigation methods of cut slope are conucted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Evaluation on Strain and Necking Region of the Rebar by Using Image Processing Method (영상분석기법을 이용한 철근의 변형률 및 넥킹구간 평가)

  • Cheung, Jin-Hwan;Lee, Jong-Han;Woo, Tae-Ryeon;Jung, Chi-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.33-42
    • /
    • 2017
  • This study conducted uniaxial tension tests on D10, D19, D29, and D35 SD400 steel-grade rebar and evaluated the strain distributions and necking regions to provide basic data for resolving differences between evaluation methods. Owing to the limitations of the existing measurement methods, this study conducted detailed evaluations of the strain of the rebar and necking regions using image processing, which is almost limitless on the measurement range and can easily distinguish measurement regions. The strain was concentrated at the region where necking occurred when the rebar approached its ultimate strength, which was successfully confirmed through image processing. The correlation between the length of the necking region and the diameter of the rebar could be analyzed by evaluating the necking region that occurs during the ultimate behavior of the rebar. According to the results, the length of the necking region is around 1.5~2.5 times the diameter of the rebar.

Case Study on the Type of Subsidence using Seismic Refraction Survey (탄성파 굴절법을 사용한 지반침하 형태분석 적용사례)

  • Yun Sang-Ho;Ji Jun;Lee Doo Sung
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.132-146
    • /
    • 2000
  • Seismic refraction survey was performed for 10 lines along NE-SW and NW-SE directions above Nampoong gallery at Makyo-ri, Dogye, Samcheok, Kangwon-do. 48 geophones were laid in line with the interval of 1m, and a 5Kg hammer was used as a source at 5 points for each line. Data processing was done using reciprocal time method, GRM, and traveltime tomography which utilizes wavefront expansion method for forward process and STRT for inversion. The result shows that the first layer has its lower boundary between 3.49m and 8.88m. The P-wave velocity of the first and the second layer were estimated as 270${\~}$360m/s and 1550${\~}$1940m/s respectively. When the boundary of the first and second layer is smooth enough and the velocity difference is large enough, GRM has little advantage over reciprocal time method. The result of reciprocal method and traveltime tomography shows consistency. The northeast part of the boundary has syncline structure, which is similar to the topography above. This implies that the collapse of the cavities of Nampoong gallery result in the subsidence of the ground surface. The subsidence is in progress across the Youngdong railroad, therefore a proper reinforcement work is required.

  • PDF

Analysis of MT Data Acquired in Victoria, Australia (호주 Victoria주 MT 탐사 자료 해석)

  • Lee, Seong-Kon;Lee, Tae-Jong;Uchida, Toshihiro;Park, In-Hwa;Song, Yoon-Ho;Cull, Jim
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.184-196
    • /
    • 2008
  • We perform MT soundings in Bendigo, the northern part of Victoria, Australia, to investigate the deep subsurface geologic structure. The primary purpose of this survey is to figure out whether the discontinuity such as faults extends northward. The time series of MT signal were measured over 11 days at 71 measurement stations together with at remote reference, which help enhance the quality of impedance estimation and its interpretation. The impedances are estimated by robust processing using remote reference technique and then inverted with 2D MT 2D inversion. We can see that known faults are clearly imaged in MT 2D inversion. Comparing resistivity images from MT 2D inversion with interpreted boundary from reflection seismic exploration, two interpretations match well each other.

IMAGING THE UPPER CRUST OF THE KOREAN PENINSULA BY SURFACE WAVE TOMOGRAPHY (표면파 토모그래피를 이용한 한반도 상부지각의 이미지)

  • Cho, Kwang-Hyun;Herrmann, Robert B.;Lee, Kie-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.41-50
    • /
    • 2006
  • The crustal structure of Korean Peninsula have been investigated by analyzing group velocity dispersion data of surface wave. Cross.correlation of seismic background motions (Campillo and Paul, 2003; Shapiro et al., 2005) has been applied to estimate the short.period Rayleigh. and Love.wave group velocity dispersion characteristics of the region. Standard processing procedures were applied to the cross.correlation, except that signal whitening was used in place of one.bit sampling equalize power in signals from different times. Multiple.filter analysis was used to extract the group velocities from the estimate Green's functions, which were then use to image the spatially varying dispersion at periods between 0.5 and 20 seconds. The tomographic inversion technique used inverted all periods simultaneously to provide a smooth dispersion curve as a function of period in addition to the usual smooth spatial image for a given period. The Gyeongsang Basin in the southeastern part of the peninsula is clearly resolved with lower group velocities.

  • PDF

Parallelizing 3D Frequency-domain Acoustic Wave Propagation Modeling using a Xeon Phi Coprocessor (제온 파이 보조 프로세서를 이용한 3차원 주파수 영역 음향파 파동 전파 모델링 병렬화)

  • Ryu, Donghyun;Jo, Sang Hoon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.129-136
    • /
    • 2017
  • 3D seismic data processing methods such as full waveform inversion or reverse-time migration require 3D wave propagation modeling and heavy calculations. We compared efficiency and accuracy of a Xeon Phi coprocessor to those of a high-end server CPU using 3D frequency-domain wave propagation modeling. We adopted the OpenMP parallel programming to the time-domain finite difference algorithm by considering the characteristics of the Xeon Phi coprocessors. We applied the Fourier transform using a running-integration to obtain the frequency-domain wavefield. A numerical test on frequency-domain wavefield modeling was performed using the 3D SEG/EAGE salt velocity model. Consequently, we could obtain an accurate frequency-domain wavefield and attain a 1.44x speedup using the Xeon Phi coprocessor compared to the CPU.

Current Status and Perspectives of Korean Geophysics (우리나라 지구물리학의 현황과 미래 전망)

  • Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.1-14
    • /
    • 2007
  • This paper briefly reviews the history of the Korean geophysics and analyze the current status of geophysical researches. And the future prospects of geophysics are discussed based on social demands for the science and technology in Korea. About thirty universities offer geophysics courses in their academic curricula. Although the number of Ph.D. graduates in geophysics had been small until the year of 1990, but is rapidly increasing. In recent years about $7{\sim}8$ Ph.D's are produced every year. The major geophysical methods used in Ph.D. theses are seismic, electrical and electromagnetic methods, and earthquake waves and research themes are computational geophysics, which involve data processing, modelling, inversion and tomography, geological structures, and paleomagnetic studies in the order of numbers. The Solid Earth Geophysics is generally distinguished in two categories such as "Global Geophysics" and "Exploration Geophysics". However, they are intimately connected, and overlap in many sectors, especially in large scale research projects. The global geophysics has a more academic and general scientific meaning, and several research groups in Korean universities are carrying out the earthquake seismology and paleomagnetic studies. On the other hand the exploration geophysics focuses on practical application of geophysical concepts, and the public research institutes conduct large projects for exploration of energy and mineral resources and to cope with environmental and natural disaster problems. The geophysical studies for local geology and regional crustal structure utilize various survey methods and usually cover both academic and exploration purposes. The computational geophysics constitutes the indispensable theoretical backgrounds for all geophysical sectors. Many young Korean geophysicists, who have strong background in mathematics and physics, devote to the computational geophysics and several groups have made the internationally highest level achievements. But, Korean geophysicists have to expand their research interests to include more global-scale, high-tech researches and collaborative works with various other science groups.

  • PDF