• Title/Summary/Keyword: Seismic data

Search Result 1,413, Processing Time 0.255 seconds

공주 능치지역 천부 지하구조에 대한 지구물리학적 연구

  • Kim, Gi-Hyeon;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2001
  • Geophysical survey was carried out to derive some information on the existence of near-surface anomalous body at Reung-Chi area in Kongju. Resistivity, seismic, magnetic and gravity method were applied. Geophysical survey that was applied was the electrical resistivity survey, seismic survey, magnetic survey, gravity survey. These surveys are analyzed to provide data of high resolution. As a result of analysis of resistivity survey, anomalies showing high resistivity anomaly than around appeared, and the one showing M-shape out of those explains the possibility that underground common or other underground structure or geographical anomalous zone could exist in the underground. As a result of analysis of seismic survey, it is clear that the low velocity layer is spread as far as the bottom of the underground. It is possible to presume that it is a phenomenon appearing while going through the underground space where it is lying in the underground. Area that shows unusual situation in interpretation of data on seismic waves are included into the area that once showed resistivity anomaly, the results of both seismic surveys come in accord. As a result of magnetic survey, a circle-shape of twin magnetic fields in the area where abnormalities are shown between electrical resistivity survey and seismic survey is appeared. Given the area of gravity survey, abnormalities whose density is different from the one around the bottom of the underground. As a result of analogizing the data of underground of the subsurface based on analysis of data from each survey, it was interpreted that anomalous zone exists commonly in the research areas.

  • PDF

Improvement of Migration Image for Ocean-bottom Seismic Data using Wavefield Separation and Mirror Imaging (파동장 분리와 미러 이미징을 이용한 해저면 탄성파 탐사 자료의 참반사 보정 영상 개선)

  • Lee, Ganghoon;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.2
    • /
    • pp.112-124
    • /
    • 2018
  • Ocean-bottom seismic survey is a seismic acquisition technique which measures data by installing 4-component receiver on the sea floor. It can produce more improved data in quality than any other acquisition techniques. In the ocean-bottom seismic survey, however, the number of receivers is limited due to high cost. Since only a small number of receivers are used for acquisition, ocean-bottom seismic data may suffer from discontinuities of events over traces, which can result in spatial aliasing. In this paper, we implemented Kirchhoff migration using mirror-imaging algorithm to improve the quality of ocean-bottom seismic image. In order to implement the mirror imaging algorithm, the seismograms should be separated into up-going and down-going wavefields and the down-going wavefield should be used for migration. In this paper, we use the P-Z summation method to separate the wavefield. Numerical examples show that the migration results using mirror imaging algorithm have wider illumination than the conventional migration, especially in the shallow layers.

Correlation interpretation for surface-geophysical exploration data-Chojeong Area, Chungbuk (지표물리탐사 자료의 상관해석-충북 초정지역)

  • Gwon, Il Ryong;Kim, Ji Su;Kim, Gyeong Ho
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.75-88
    • /
    • 1999
  • A recent major subject of geophysical exploration is research into 3-D subsurface imaging with a composite information from the various geophysical data. In an attempt to interpret Schlumberger sounding data for the study area in 2-D and 3-D view, resistivity imaging was firstly performed and then pseudo-3-D resistivity volume was reconstructed by interpolating several 1-D resistivity plots. Electrical resistivity discontinuities such as fracture zone were successfully clarified in pseudo-3-D resistivity volume. The low resistivity zone mainly associated with fracture zone appears to develop down to granitic basement in the central part of the study area. Seismic velocity near the lineament is estimated to be approximately as small as 3,000 m/s, and weathering-layer for the southeastern part is interpreted to be deeper than for the northwestern part. Geophysical attributes such as electrical resistivity, seismic velocity, radioactivity for the Chojeong Area were analysed by utilizing a GIS software Arc/Info. The major fault boundaries and fracture zones were resolved through image enhancement of composite section (electrical resistivity and seismic refraction data) and were interpreted to develop in the southeastern part of the area, as characterized by low electrical resistivity and low seismic velocity. However, radioactivity attribute was found to be less sensitive to geological discontinuities, compared to resistivity and seismic velocity attributes.

  • PDF

Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data (전단파속도와 지반공학적 현장 관입시험 자료의 상관관계 도출)

  • Sun, Chang-Guk;Kim, Hong-Jong;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • Shear wave velocity($V_S$), which can be obtained using various seismic tests, has been emphasized as representative geotechnical dynamic characteristic mainly for seismic design and seismic performance evaluation in the engineering field. For the application of conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests(SPT) and piezocone penetration tests(CPTu) together with a variety of borehole seismic tests were performed at many sites in Korea. Through statistical modeling of the in-situ testing data, in this study, the correlations between $V_S$ and geotechnical in-situ penetrating data such as blow counts(N value) from SPT and piezocone penetrating data such as tip resistance ($q_t$), sleevefriction($f_s$), and pore pressure ratio($B_q$) were deduced and were suggested as an empirical method to determine $V_S$. Despite the incompatible strain levels of the conventional geotechnical penetration tests and the borehole seismic tests, it is shown that the suggested correlations in this study are applicable to the preliminary estimation of $V_S$ for Korean soil layers.

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.

Review on Pre-processing of Earthquake Data from KEPRI Seismic Monitoring System (전력연구원 지진관측자료의 사전자료처리 기법 및 효과적인 활용에 관한 고찰)

  • 연관희;박동희;최원학;장천중
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.39-50
    • /
    • 2002
  • Several pre-processing techniques for earthquake data from earthquake monitoring institutes in Korea including Korea Electric Power Research Institute are thoroughly reviewed. Among these techniques for removing an instrumental response, removing the non-causal ringing distortion by FIR filter, checking calibration status of seismic stations, and minimizing the window effect are introduced and applied to real data. It is also recommended that analysts evaluate S/N ratio in the frequency domain and consider the possibility of using the saturated earthquake data.

Experimental validation of ASME strain-based seismic assessment methods using piping elbow test data

  • Jong-Min Lee ;Jae-Yoon Kim;Hyun-Seok Song ;Yun-Jae Kim ;Jin-Weon Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1616-1629
    • /
    • 2023
  • To quantify the conservatism of existing ASME strain-based evaluation methods for seismic loading, this paper presents very low cycle fatigue test data of elbows under various cyclic loading conditions and comparison of evaluation results with experimental failure cycles. For strain-based evaluation methods, the method presented in ASME BPVC CC N-900 and Sec. VIII are used. Predicted failure cycles are compared with experimental failure cycle to quantify the conservatism of evaluation methods. All methods give very conservative failure cycles. The CC N-900 method is the most conservative and prediction results are only ~0.5% of experimental data. For Sec. VIII method, the use of the option using code tensile properties gives ~3% of experimental data, and the use of the material-specific reduction of area can reduce conservatism but still gives ~15% of experimental data.

Swell Effect Correction for the High-resolution Marine Seismic Data (고해상 해저 탄성파 탐사자료에 대한 너울영향 보정)

  • Lee, Ho-Young;Koo, Nam-Hyung;Kim, Wonsik;Kim, Byoung-Yeop;Cheong, Snons;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.240-249
    • /
    • 2013
  • The seismic data quality of marine geological and engineering survey deteriorates because of the sea swell. We often conduct a marine survey when the swell height is about 1 ~ 2 m. The swell effect correction is required to enhance the horizontal continuity of seismic data and satisfy the resolution less than 1 m. We applied the swell correction to the 8 channel high-resolution airgun seismic data and 3.5 kHz subbottom profiler (SBP) data. The correct sea bottom detection is important for the swell correction. To detect the sea bottom, we used maximum amplitude of seismic signal around the expected sea bottom, and picked the first increasing point larger than threshold value related with the maximum amplitude. To find sea bottom easily in the case of the low quality data, we transformed the input data to envelope data or the cross-correlated data using the sea bottom wavelet. We averaged the picked sea bottom depths and calculated the correction values. The maximum correction of the airgun data was about 0.8 m and the maximum correction of two kinds of 3.5 kHz SBP data was 0.5 m and 2.0 m respectively. We enhanced the continuity of the subsurface layer and produced the high quality seismic section using the proper methods of swell correction.

Prestack Depth Migration for Gas Hydrate Seismic Data of the East Sea (동해 가스 하이드레이트 탄성파자료의 중합전 심도 구조보정)

  • Jang, Seong-Hyung;Suh, Sang-Yong;Go, Gin-Seok
    • Economic and Environmental Geology
    • /
    • v.39 no.6 s.181
    • /
    • pp.711-717
    • /
    • 2006
  • In order to study gas hydrate, potential future energy resources, Korea Institute of Geoscience and Mineral Resources has conducted seismic reflection survey in the East Sea since 1997. one of evidence for presence of gas hydrate in seismic reflection data is a bottom simulating reflector (BSR). The BSR occurs at the interface between overlaying higher velocity, hydrate-bearing sediment and underlying lower velocity, free gas-bearing sediment. That is often characterized by large reflection coefficient and reflection polarity reverse to that of seafloor reflection. In order to apply depth migration to seismic reflection data. we need high performance computers and a parallelizing technique because of huge data volume and computation. Phase shift plus interpolation (PSPI) is a useful method for migration due to less computing time and computational efficiency. PSPI is intrinsically parallelizing characteristic in the frequency domain. We conducted conventional data processing for the gas hydrate data of the Ease Sea and then applied prestack depth migration using message-passing-interface PSPI (MPI_PSPI) that was parallelized by MPI local-area-multi-computer (MPI_LAM). Velocity model was made using the stack velocities after we had picked horizons on the stack image with in-house processing tool, Geobit. We could find the BSRs on the migrated stack section were about at SP 3555-4162 and two way travel time around 2,950 ms in time domain. In depth domain such BSRs appear at 6-17 km distance and 2.1 km depth from the seafloor. Since energy concentrated subsurface was well imaged we have to choose acquisition parameters suited for transmitting seismic energy to target area.

Development of a PC-based 3-D Seismic Visualization Software (PC 기반의 3차원 탄성파 자료 시각화 소프트웨어 개발 연구)

  • Kim, Hyeon-Gyu;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • A software to visualize and analyse 3-D seismic data is developed using OpenGL, one of the most popular 3-D graphic library, under the PC and Windows platform. The software can visualize the data as volume and slices, whose color distribution is specified by a special dialog box that can pick a color in RGB or HSV format. The dialog box can also designate opacity values so that several 3-D objects can be displayed superimposed each other. Horizon picking is implemented very easily with this software thanks to the guided picking method. The picked points from a horizon will compose a set of points, mesh, and a surface, which can be viewed and analysed in three dimensions.