• Title/Summary/Keyword: Seismic damage estimation

Search Result 96, Processing Time 0.026 seconds

Seismic Analysis of Tunnel in Transverse Direction Part I: Estimation of Seismic Tunnel Response via Method of Seismic Displacement (터널 횡방향 지진해석 Part I: 응답변위법을 통한 터널의 지진응답 예측)

  • Park, Du-Hee;Shin, Jong-Ho;Yun, Se-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.57-70
    • /
    • 2010
  • Recent earthquakes have demonstrated that the tunnels, which were once considered to be highly resistant to earthquakes, are susceptible to substantial damage under severe seismic loading. Among various modes of deformation under an earthquake loading, the response of the tunnel in the transverse direction is known to be the critical mode. This paper investigates the seismic response of the tunnel in the transverse direction using the method of seismic displacement, which is a type of pseudo-static analysis. Firstly, the methods of calculating the ground deformation are compared. It is shown that the single and double cosine may not provide an accurate estimation of the ground deformation, and that a one-dimensional site response analysis needs to be performed for a more reliable evaluation. Secondly, the tunnel responses are calculated using the simplified, analytical, and numerical solutions. It is demonstrated that the simplified method provides poor estimates of the tunnel response ground deformation. The analytical solution is shown to be effective in modeling circular tunnels in uniform ground, but has serious limitation in modeling tunnel response in non-uniform ground. Numerical analyses are shown to be applicable to all cases, and give the most accurate estimates of the tunnel response. It is also demonstrated that the linear solutions can be so conservative that the soil nonlinearity needs to be accounted for more accurate evaluation of the tunnel response.

Expected extreme value of pounding force between two adjacent buildings

  • Rahimi, Sepideh;Soltani, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.183-192
    • /
    • 2017
  • Seismic pounding between adjacent buildings with inadequate separation and different dynamic characteristics can cause severe damage to the colliding buildings. Efficient estimation of the maximum pounding force is required to control the extent of damage in adjacent structures or develop an appropriate mitigation method. In this paper, an analytical approach on the basis of statistical relations is presented for approximate computation of extreme value of pounding force between two adjacent structures with equal or unequal heights subjected to stationary and non-stationary excitations. The nonlinearity of adjacent structures is considered using Bouc-Wen model of hysteresis and the pounding effect is simulated by applying the nonlinear viscoelastic model. It is shown that the proposed approach can significantly save computational costs by obviating the need for performing dynamic analysis. To assess the reliability and accuracy of the proposed approach, the results are compared with those obtained from nonlinear dynamic analysis.

Fragility Curve of Continuous Buried Pipeline subjected to Transverse Permanent Ground Deformation due to Liquefaction (액상화.횡방향 영구지반변형을 받는 연속된 지중매설관로의 구조적 손상도곡선 도출)

  • Kim, Tae-Wook;Lim, Yun-Mook
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.358-365
    • /
    • 2006
  • In this study, fragility curves of continuous buried pipelines subjected to transverse PGD (permanent ground deformation) due to liquefaction are proposed. For the waterworks system, continuos buried pipelines made of ductile iron, poly ethylene, and poly vinyl chloride are analyzed and fragility curves are drawn. Fragility curves are based on the repetitive analyses results and formulated with the dominant factors of behaviour of buried pipeline. With the use of fragility curves, engineers can estimate the status of damage of buried pipeline without overall knowledge of relevant features. Especially, fragility curves proposed in this study will act as a major module of earthquake loss estimation method. Moreover, critical value of magnitude and width of transverse PGD (by which the full damage status of buried pipelines are induced) are estimated. With the use of regression curves of these values, pre evaluation of seismic safety of buried pipelines located within liquefaction hazardous region will be possible.

  • PDF

Identifying stiffness irregularity in buildings using fundamental lateral mode shape

  • Vijayanarayanan, A.R.;Goswami, Rupen;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.437-448
    • /
    • 2017
  • Soft or extreme soft storeys in multi-storied buildings cause localized damage (and even collapse) during strong earthquake shaking. The presence of such soft or extremely soft storey is identified through provisions of vertical stiffness irregularity in seismic design codes. Identification of the irregularity in a building requires estimation of lateral translational stiffness of each storey. Estimation of lateral translational stiffness can be an arduous task. A simple procedure is presented to estimate storey stiffness using only properties of fundamental lateral translational mode of oscillation (namely natural period and associated mode shape), which are readily available to designers at the end of analysis stage. In addition, simplified analytical expressions are provided towards identifying stiffness irregularity. Results of linear elastic time-history analyses indicate that the proposed procedure captures the irregularity in storey stiffness in both low- and mid-rise buildings.

The Seismic Hazard Study on Chung-Nam Province using HAZUS (HAZUS를 이용한 충남지역의 지진피해 연구)

  • Kang, Ik-Bum;Park, Jung-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.73-83
    • /
    • 2002
  • HAZUS developed by FEMA is applied to estimation on seismic hazard in Chung-Nam Province using basic data on general building, population, and geology of well-logging. Through the investigation on historical and instrumental earthquakes in Korean Peninsula seismic hazard is estimated in Chung-Nam Province in two ways for calculation of acceleration, deterministically and probabilistically. In deterministic method seismic hazard in Chung-Nam Province is estimated by generation of the maximum event that occurs in Hongsung and has magnitude of 6.0. According to the result, Hongsung Gun, Yesan Gun, and Boryung City are the most severe in building damage. The expected number of people who need hospitalization in Hongsung Gun and Yesan Gun due to the earthquake are 1.1 and 0.4, respectively. In probabilistic(return period of 5,000 year) method seismic hazard in Chung-Nam Province is estimated. According to the result, Gongju City is the most severe in building damage. The expected number of people who need hospitalization in Gongju City and Nonsan City due to the earthquake are 0.1 and 0.15, respectively.

Estimation of Seismic Performance and Earthquake Damage Ratio of Existing Reinforced Concrete Buildings in Japan (일본의 기존 철근콘트리트건물의 내진성능 및 지진피해율의 평가)

  • 이강석;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • The main objective of this paper is to apply as the basic data for development of a methodology to discuss the future earthquake preparedness measures in Korea by investigating the concept and applicabilities of the Japanese Standard for Evaluation of Seismic Performance of Existing RC Buildings developed in Japan among the methodologies of all the countries of the world. This paper describes the seismic performance, Is-index, of existing RC buildings in Tokyo, Japan evaluated by the Japanese Standard, also the relationships between Is-index distribution of existing RC buildings in Tokyo and that of Shizuoka and Chiba Prefecture reported already in reference[4][5][6] are investigated. And from the comparison with Is-index to buildings damaged by earthquakes experienced in Japan, the damage ratio due to severe earthquake of 3 districts mentioned above is estimated based on the probabilistic point of view. The results of this study can be utilized to identify urgently required earthquake preparedness measures with highest priority in existing RC buildings, and the methodology to evaluate the seismic performance of existing RC buildings in Japan, statistics analysis method and the methodology to estimate earthquake damage ratio based on the probabilistic point of view shown in this study can be recommended to develop a methodology to discuss the future earthquake preparedness measures in Korea.

  • PDF

Stochastic Self-similarity Analysis and Visualization of Earthquakes on the Korean Peninsula (한반도에서 발생한 지진의 통계적 자기 유사성 분석 및 시각화)

  • JaeMin Hwang;Jiyoung Lim;Hae-Duck J. Jeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.493-504
    • /
    • 2023
  • The Republic of Korea is located far from the boundary of the earthquake plate, and the intra-plate earthquake occurring in these areas is generally small in size and less frequent than the interplate earthquake. Nevertheless, as a result of investigating and analyzing earthquakes that occurred on the Korean Peninsula between the past two years and 1904 and earthquakes that occurred after observing recent earthquakes on the Korean Peninsula, it was found that of a magnitude of 9. In this paper, the Korean Peninsula Historical Earthquake Record (2 years to 1904) published by the National Meteorological Research Institute is used to analyze the relationship between earthquakes on the Korean Peninsula and statistical self-similarity. In addition, the problem solved through this paper was the first to investigate the relationship between earthquake data occurring on the Korean Peninsula and statistical self-similarity. As a result of measuring the degree of self-similarity of earthquakes on the Korean Peninsula using three quantitative estimation methods, the self-similarity parameter H value (0.5 < H < 1) was found to be above 0.8 on average, indicating a high degree of self-similarity. And through graph visualization, it can be easily figured out in which region earthquakes occur most often, and it is expected that it can be used in the development of a prediction system that can predict damage in the event of an earthquake in the future and minimize damage to property and people, as well as in earthquake data analysis and modeling research. Based on the findings of this study, the self-similar process is expected to help understand the patterns and statistical characteristics of seismic activities, group and classify similar seismic events, and be used for prediction of seismic activities, seismic risk assessments, and seismic engineering.

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

Characteristics of Seismic Activity in the 20th century and Analysis on the Damage and Intensity of Yeongwol Earthquake(December, 13, 1996) (20C 한반도 지진활동 특성과 영월지진(1996년12월13일)의 피해 및 진도 분석)

  • 경재복
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.77-87
    • /
    • 1997
  • The earthquake data(M$\geq$4.0) for post-1900 in the Korean Peninsula show temporal variation with active and quiet periods. The pattern is quite similar to northeastern China and Inner Zone of Southwest Japan. Yeongweol earthquake occurred in the seismic gap region of the Korean Peninsula. This is the first medium-size earthquake in inland region of the southern peninsula since 1978. The intensity based on the felt area estimation of about 400 places shows MMI III-Ⅷ in inland region. IIon Cheju Island and Ion Ulreung Island. The isoseismal of MMI Ⅶ shows an elongated circle in the direction of NE-SW and covers some parts of Jungdong-myon, Yeongweol-kun, Sindong-eup and Nam-myun, Jeongseon-kun. There occurred quite strong shaking, numerous cracks on the walls of buildings, falling and movement of slate and tiles on the roofs, falling of tiles from the wall and falling of materials from desks, rook falling from mountain and collapse of gravel lauers on the river side. The least square fitting of the intensity data of the Yeongweol earthquake by a popular intensity attenuation relation yields the following : I=Io+1.82249 - 0.65295*InR - 0.00707*R

  • PDF

Seismic Hazards near the Harbors using Historic and Instrumental Earthquake Data (역사 및 계기 지진 자료를 이용한 주요 항만 지역의 지진재해 위험성)

  • Kim, Kwang-Hee;Kang, Su-Young;Jang, In-Sung;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.5
    • /
    • pp.419-425
    • /
    • 2009
  • Although earthquake damage was negligible in Korea during the last a few decades, its historic records suggest that the peninsula have experienced severe earthquake damages throughout the history. The potential for disastrous earthquakes, therefore, should always be considered. Harbors handle 99.6% of imported and exported cargo in Korea. Thus, it is necessary to secure the safety of harbors against seismic events and to establish a support system of emergency measures. Although instrumental seismic data are favored for seismic hazard estimation, their history in the peninsula is limited only to the past 30 years, which does not represent the long-term seismic characteristics of the peninsula. We use historic earthquakes with magnitude greater than 5 to observe long-term regional seismic hazards. Results of historic earthquake records indicate relatively high seismic hazard at harbors in Pohang, Ulsan and Incheon. Analysis of instrumental earthquake records reveal relatively high seismic hazard for harbors located along the East coast including Okgye, Mukho, Donghae, Samcheok, Pohang, and Ulsan.