• Title/Summary/Keyword: Seismic characteristics evaluation

Search Result 249, Processing Time 0.027 seconds

Seismic Performance Assessment of Existing Circular Sectional RC Bridge Columns according to Lap-splice Length of Longitudinal Bars (축방향철근의 겹침이음길이에 따른 원형 RC교각의 내진성능평가)

  • Park, Kwang Soon;Seo, Hyeong Yeol;Kim, Tae-Hoon;Kim, Ick Hyun;Sun, Chang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.201-212
    • /
    • 2014
  • The plastic hinge region of RC pier ensures its nonlinear behavior during strong earthquake events. It is assumed that the piers secure sufficient strength and ductility in order to prevent the collapse of the bridge during strong earthquake. However, the presence of a lap-splice of longitudinal bars in the plastic hinge region may lead to the occurrence of early bond failure in the lap-splice zone and result in significant loss of the seismic performance. The current regulations for seismic performance evaluation limit the ultimate strain and displacement ductility considering the eventual presence of lap-splice, but do not consider the lap-splice length. In this study, seismic performance test and analysis are performed according to the cross-sectional size and the lap-splice length in the case of longitudinal bars with lap-splice located in the plastic hinge region of existing RC bridge columns with circular cross-section. The seismic behavioral characteristics of the piers are also analyzed. Based upon the results, this paper presents a more reasonable seismic performance evaluation method considering the lap-splice length and the cross-sectional size of the column.

Seismic Fragility Functions of a SDOF Nonlinear System with an Energy Dissipation Device (에너지 소산형 감쇠기가 설치된 단자유도 비선형 시스템의 지진취약도 함수)

  • Park, Ji-Hun;Yun, Soo-Yong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2012
  • Seismic fragility functions are derived for probabilistic evaluation of seismic control performance of energy dissipation devices installed in reinforced concrete structures. Displacement-dependent dampers are added to the nonlinear single-degree-of-freedom systems with different natural periods and hysteretic characteristics of which stiffness and strength has uncertainty. Nonlinear time history analysis is conducted for those SDOF systems and the result is processed statistically to obtain seismic fragility functions in the form of log normal distribution. Variation of seismic fragility functions for different parameters of SDOF systems and dampers are investigated and the seismic control performance is assessed probabilistically.

Dynamic Characteristics of the Box Structure in Multi-layered Ground Under Earthquake Load (지진하중을 받는 다층지반내 박스구조물의 동적 특성)

  • Kim, In Dae;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • In this study, a scaled model test of the shaking table and a seismic analysis considering effective stresses were performed to reveal the dynamic behavior characteristics of box structures deep located in multi-layered soils upon seismic loading. The input seismic wave was operated below the ground using five seismic waves, including long period wave (Hachinohe), short period wave (Ofunato), artificial wave and real earthquakes that occurred in Gyeong-ju and Po-hang. As a result of model test and numerical analysis, the vertical displacement of box structures upon seismic loading was greater than that of horizontal direction, and it was confirmed that an increase of excess pore water pressure below the foundation ground caused a displacement. In addition, behavior of the ground and structures during artificial seismic wave appeared to be larger than real earthquake wave.

Seismic Response Evaluation of Mid-Story Isolation System According to the Change of Characteristics of the Seismic Isolation Device (면진장치 특성 변화에 따른 중간층 면진시스템의 지진응답 평가)

  • Kim, Hyun-Su;Kim, Su-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.109-116
    • /
    • 2018
  • As the number of high-rise buildings increases, a mid-story isolation system has been proposed for high-rise buildings. Due to structural problems, an appropriate isolation layer displacement is required for an isolation system. In this study, the mid-story isolation system was designed and the seismic response of the structure was investigated by varying the yield strength and the horizontal stiffness of the seismic isolation system. To do this, a model with an isolation layer at the bottom of $15^{th}$ floor of a 20-story building was used as an example structure. Kobe(1995) and Nihonkai-Chubu(1983) earthquake are used as earthquake excitations. The yield strength and the horizontal stiffness of the seismic isolation system were varied to determine the seismic displacement and the story drift ratio of the structure. Based on the analytical results, as the yield strength and horizontal stiffness increase, the displacement of the isolation layer decreases. The story drift ratio decreases and then increases. The displacement of the isolation layer and the story drift ratio are inversely proportional. Increasing the displacement of the isolation layer to reduce the story drift ratio can cause the structure to become unstable. Therefore, an engineer should choose the appropriate yield strength and horizontal stiffness in consideration of the safety and efficiency of the structure when a mid-story isolation system for a high-rise building is designed.

Constructibility Characteristice of Wood Frames of Lateral Cyclic Load - Geungnakjeon Hall of Bongjeongsa Temple - (수평하중에 대한 목조프레임의 결구공법에 대한 연구 - 봉정사(鳳停寺) 극락전(極樂殿)을 대상으로 -)

  • Lee, Ho;Lee, Taick-Oun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.4
    • /
    • pp.255-262
    • /
    • 2007
  • The main purpose of this study is to figure out of seismic structural behaviour of Gukrakjeon of Bongjung-Temple which is the oldest wooden architecture in Korea, and to evaluate in engineering aspect of seismic records. The non-lineal analysis is essential for accurate evaluation of wooden architecture in seismic behaviour. Based on the experimental test with applying cycle forces in joint specimens is focusing on not only to prove the structural characteristics, but also to evaluate damping ratio, As the result of this test, damping ratio is affected not the joint methods but the frame variations. The average damping ratio was 26%.

  • PDF

Some Thoughts on the Preliminary Seismic Performance Evaluation Procedure of Subway Infrastructures (도시철도 시설물의 내진성능 예비평가체계에 대한 소고)

  • Park, Beom-Ho;Lim, Nam-Hyoung;Lee, Tae-Hyung;Kim, Kee-Dong;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.666-674
    • /
    • 2010
  • There is a few problems in the preliminary seismic performance evaluation procedure of subway infrastructures, such as cut-and-cover tunnel structures and bridge structures, recently because the characteristics of subway infrastructures are not properly considered in the procedure. In particular, the evaluation procedure of vehicular bridge structures is applied to subway bridges without any modification. Moreover, the present evaluation procedure is lack of both theoretical and empirical backgrounds, which makes the evaluation less reliable. This paper presents problems in the existing preliminary evaluation procedure and proposes possible modification(revision) to the procedure.

Improvement of Seismic Performance Evaluation Method for Concrete Dam Piers by Applying Collapse-Level Earthquake(CLE) (붕괴방지수준(CLE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Min-Ho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this paper is to suggest a method for applying a reasonable dam axial seismic load loading method and load-bearing capacity evaluation method in the dynamic analysis of the pier part of a concrete dam to which the seismic force of the collapse prevention level is applied. To this end, the pier part of a concrete dam was selected as a target facility, and the characteristics of the dynamic behavior in the axial direction of the weir dam were analyzed through dynamic analysis applying various weir widths, and 'U.S. The load-bearing capacity evaluation was performed by applying the RC hydraulic structure evaluation technique suggested by the Army Corps, 2007'. As a result of the study, when applying seismic force in the axial direction of the pier part, it is more realistic to assume that the axial direction of the weir part dam behaves as a rigid body and 'U.S. Army Corps, 2007' suggested that the method of reviewing the load-bearing capacity for moment and shear was considered reasonable, so it was concluded that improvement of the current evaluation method was necessary. If the improvement of the research result is applied, it will have the effect of deriving more reasonable evaluation results than the current seismic performance evaluation method using CLE. It is judged that additional research is needed in the future on the torsional moment occurring in the pier part.

Investigation of Effect of Input Ground Motion on the Failure Surface of Mountain Slopes

  • Khalid, Muhammad Irslan;Pervaiz, Usman;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.7
    • /
    • pp.5-12
    • /
    • 2021
  • The reliable seismic stability evaluation of the natural slopes and geotechnical structures has become a critical factor of the design. Pseudo-static or permanent displacement methods are typically employed to evaluate the seismic slope performance. In both methods, the effect of input ground motion on the sliding surface is ignored, and failure surface from the limit equilibrium method is used. For the assessment of the seismic sensitivity of failure surface, two-dimensional non-linear finite element analyses are performed. The performance of the finite element model was validated against centrifuge measurements. A parametric study with a range of input ground motion was performed, and numerical results were used to assess the influence of ground motion characteristics on the sliding surface. Based on the results, it is demonstrated that the characteristics of input ground motion have a significant influence on the location of the seismically induce failure surface. In addition to dynamic analysis, pseudo-static analyses were performed to evaluate the discrepancy. It is observed that sliding surfaces developed from pseudo-static and dynamic analyses are different. The location of the failure surface change with the amplitude and Tm of motion. Therefore, it is recommended to determine failure surfaces from dynamic analysis

Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques

  • Preciado, Adolfo;Bartoli, Gianni;Budelmann, Harald
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.339-352
    • /
    • 2015
  • Ancient masonry towers constitute a relevant part of the cultural heritage of humanity. Their earthquake protection is a topic of great concern among researchers due to the strong damage suffered by these brittle and massive structures through the history. The identification of the seismic behavior and failure of towers under seismic loading is complex. This strongly depends on many factors such as soil characteristics, geometry, mechanical properties of masonry and heavy mass, as well as the earthquake frequency content. A deep understanding of these aspects is the key for the correct seismic vulnerability evaluation of towers and to design the most suitable retrofitting measure. Recent tendencies on the seismic retrofitting of historical structures by means of prestressing are related to the use of smart materials. The most famous cases of application of prestressing in towers were discussed. Compared to horizontal prestressing, vertical post-tensioning is aimed at improving the seismic behavior of towers by reducing damage with the application of an overall distribution of compressive stresses at key locations.

Performance-based evaluation of strap-braced cold-formed steel frames using incremental dynamic analysis

  • Davani, M.R.;Hatami, S.;Zare, A.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1369-1388
    • /
    • 2016
  • This study is an effort to clearly recognize the seismic damages occurred in strap-braced cold formed steel frames. In order to serve this purpose, a detailed investigation was conducted on 9 full scale strap-braced CFS walls and the required data were derived from the results of the experiments. As a consequence, quantitative and qualitative damage indices have been proposed in three seismic performance levels. Moreover, in order to assess seismic performance of the strap-braced CFS frames, a total of 8 models categorized into three types are utilized. Based on the experimental results, structural characteristics are calculated and all frames have been modeled as single degree of freedom systems. Incremental dynamic analysis using OPENSEES software is utilized to calculate seismic demand of the strap-braced CFS walls. Finally, fragility curves are calculated based on three damage limit states proposed by this paper. The results showed that the use of cladding and other elements, which contribute positively to the lateral stiffness and strength, increase the efficiency of strap-braced CFS walls in seismic events.