• Title/Summary/Keyword: Seismic characteristics

Search Result 1,435, Processing Time 0.027 seconds

Performance Evaluation of Fiber-Reinforced Concrete Compression Members Transversely Constrained by BFRP (BFRP로 횡구속된 섬유 보강 콘크리트 압축부재의 성능평가)

  • Lee, Gyeong-Bok;Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • Corrosion and degradation of reinforced structures due to abnormal climates and natural disasters further accelerate the aging of structures. Coping with the decrease in structure performance, many old structures are being repaired and reinforced with low-weight and high-strength materials such as glass fiber composite material (GFRP). To further contribute, this paper focus on a more economical and eco-friendly material, basalt fiber composite (BFRP), which provide a more effective lateral constraint effect for seismic reinforcement. The main variables considered in this study are the curing temperature during the manufacturing of BFRP and the material characteristics of the target concrete member. The lateral constraint reinforcement effect was investigated through the evaluation of the performance of normal concrete and those with improved durability through fiber reinforcement. The reinforcement effect was 3.15 times for normal concrete and 3.72 times for fiber reinforced concrete, and the difference in reinforcement effect due to the improvement of the durability characteristics of the compression member was not significant. Lastly, the performance of the BFRP was compared with the results of the GFRP reinforcement from the previous study. The effect of the BFRP reinforcement was 1.18 times better than that of the GFRP reinforcement.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

Estimate on the Crustal Thickness from Using Multi-geophysical Data Sets and Its Comparison to Heat Flow Distribution of Korean Peninsula (다양한 지구물리 자료를 통해 얻은 한반도의 지각두께 예측과 지열류량과의 비교)

  • Choi, Soon-Young;Kim, Hyung-Rae;Kim, Chang-Hwan;Park, Chan-Hong;Suh, Man-Chul
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.493-502
    • /
    • 2011
  • We study the deep structure of Korean Peninsula by estimating Moho depth and crustal thickness from using land and oceanic topography and free-air gravity anomaly data. Based on Airy-Heiskanen isostatic hypothesis, the correlated components between the terrain gravity effects and free-air gravity anomalies by wavenumber correlation analysis(WCA) are extracted to estimate the gravity effects that will be resulted from isostatic compensation for the area. With the resulting compensated gravity estimates, Moho depth that is a subsurface between the crust and mantle is estimated by the inversion in an iterative method with the constraints of 20 seismic depth estimates by the receiver function analysis, to minimize the uncertainty of non-uniqueness. Consequently, the average of the resulting crustal thickness estimate of Korean Peninsula is 32.15 km and the standard deviation is 3.12 km. Moho depth of South Korea estimated from this study is compared with the ones from the previous studies, showing they are approximately consistent. And the aspects of Moho undulation from the respective study are in common deep along Taebaek Mountains and Sobaek Mountains and low depth in Gyeongsang Basin relatively. Also, it is discussed that the terrain decorrelated free-air gravity anomalies inferring from the intracrustal characteristics of the crust are compared to the heat flow distributions of South Korea. The low-frequency components of terrain decorrelated Free-air gravity anomalies are highly correlated with the heat flow data, especially in the area of Gyeongsang basin where high heat flow causes to decrease the density of the rocks in the lower crust resulting in lowering the Moho depth by compensation. This result confirms that the high heat sources in this area coming from the upper mantle by Kim et al. (2008).

Research on Earthquake Occurrence Characteristics Through the Comparison of the Yangsan-ulsan Fault System and the Futagawa-Hinagu Fault System (양산-울산 단층계와 후타가와-히나구 단층계의 비교를 통한 지진발생특성 연구)

  • Lee, Jinhyun;Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-209
    • /
    • 2016
  • The understanding of geometric complexity of strike-slip Fault system can be an important factor to control fault reactivation and surface rupture propagation under the regional stress regime. The Kumamoto earthquake was caused by dextral reactivation of the Futagawa-Hinagu Fault system under the E-W maximum horizontal principal stress. The earthquakes are a set of earthquakes, including a foreshock earthquake with a magnitude 6.2 at the northern tip of the Hinagu Fault on April 14, 2016 and a magnitude 7.0 mainshock which generated at the intersection of the two faults on April 16, 2016. The hypocenters of the main shock and aftershocks have moved toward NE direction along the Futagawa Fault and terminated at Mt. Aso area. The intersection of the two faults has a similar configuration of ${\lambda}$-fault. The geometries and kinematics, of these faults were comparable to the Yansan-Ulsan Fault system in SE Korea. But slip rate is little different. The results of age dating show that the Quaternary faults distributed along the northern segment of the Yangsan Fault and the Ulsan Fault are younger than those along the southern segment of the Yansan Fault. This result is well consistent with the previous study with Column stress model. Thus, the seismic activity along the middle and northern segment of the Yangsan Fault and the Ulsan Fault might be relatively active compared with that of the southern segment of the Yangsan Fault. Therefore, more detailed seismic hazard and paleoseismic studies should be carried out in this area.

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.

Modeling of Earthquake Ground Motion in a Small-Scale Basin (소규모 분지에서의 지진 지반운동 모델링)

  • Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.92-101
    • /
    • 2012
  • Three-dimensional finite-difference simulation in a small-scale half-sphere basin with planar free-surface is performed for an arbitrary shear-dislocation point source. A new scheme to deal with free-surface boundary condition is presented. Then basin parameters are examined to understand main characteristics on ground-motion response in the basin. To analyze the frequency content of ground motion in the basin, spectral amplitudes are compared with each other for four sites inside and outside the basin. Also particle motions for those sites are examined to find which kind of wave plays a dominant role in ground-motion response. The results show that seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to constructive interference of the direct Swave with basin-edge induced surface waves. Also, ground-motion amplification over the deepest part of the basin is relatively lower than that above shallow basin edge. In the small-scale basin with relatively simple bedrock interface, therefore, the ground-motion amplification may be more related to the source azimuth or direction of the incident waves into the basin rather than depth of it.

Analysis of the Physical Properties of Ground before and after Low Flowing Grouting (저유동성 그라우팅 시공전후 지반의 물성변화 분석)

  • Seo, Seok-Hyun;Lee, Jung-Sang;Kang, Won-Dong;Jung, Euiyoup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.115-127
    • /
    • 2019
  • The low-flow grouting injection technique, the target construction method for this study, is a method of pouring mortar into the ground by non-emission replacement principle, which can be expected to increase the density of the ground, and, in some cases, be used as a base file using the strength of the high injection solids, along with low noise, low pollution, and high durability. To verify that the dynamic characteristics of the ground are improved by the low-flow injection technique, the test work was conducted on the site and physical tests were performed, and the quality of the improvement formed in the ground was verified through the indoor test on the core and core recovery rate was analyzed. The density logs test layer calculated the volume density of the ground layer by using the Compton scattering of gamma-rays, and the sonic logs was tested on the ground around the drill hole using a detector consisting of sonar and receiver devices inside the drill hole. As a result of the measurement of the change in physical properties (density and sonic logs) before and after grouting, both properties were basically increased after infusion of grout agent. However, the variation in density increase was greater than the increase in speed after grouting, and the ground density measurement method was thought to be effective in measuring the fill effect of the filler. Strength and core recovery rates were measured from specimens taken after the age of 28 days, and the results of the test results of the diffusion and strength test of the improved products were verified to satisfy the design criteria, thereby satisfying the seismic performance reinforcement.

Inconsistency between Information Search and Purchase Channels: Focusing on the "Showrooming Phenomenon" (멀티채널 환경에서 정보탐색채널과 구매채널의 불일치 현상에 관한 연구: 쇼루밍 현상을 중심으로)

  • Yeom, Min-Sun
    • Journal of Distribution Science
    • /
    • v.13 no.9
    • /
    • pp.81-93
    • /
    • 2015
  • Purpose - "Showrooming" refers to the phenomenon where a shopper visits a store to see and compare products but makes the purchase online at a lower price. Surveys on showrooming activities at home and abroad indicate that a significant number of consumers pursue showrooming activities. The advent of "showroomers," who engage in buying activities, hovering both on and offline, while selectively choosing sales channels to suit their needs, is powerful enough to erode the borders between channels and bring about seismic changes in the distribution industry. However, surprisingly, there has been no in-depth discussion on showrooming. This study seeks to theoretically investigate what impact personal characteristics have on showrooming preferences and attitudes in a multi-channel environment. Specifically, assumptions have been made that price perception, perceived performance risk, and trust in online shopping not only have a direct impact on showrooming attitudes but also indirectly affect it through the means of contact motivation. Research design, data, and methodology - To test the hypotheses, this study conducted a survey of male and female shoppers, ages 20 through 40s, who live in metropolitan areas, and have actively showroomed fashion items in the last six months. A clothing item usually purchased after a careful decision-making process was chosen as the target product of the study. The survey was conducted between October and November 2014, using a professional survey service provider. A total of 200 surveys were collected, of which 198 were used for analysis. Conceptual model Structural Equation Modeling (SEM) and Amos 18.0 were employed for data analysis and model verification. In addition, following the confirmatory factor analysis and measurement model analysis, the theoretical model that corresponds to the research model was analyzed. Results - Analysis results show that price perception, perceived performance risk, and trust in online shopping have a statistically significant and positive (+) impact on showrooming attitudes. In addition, in terms of the indirect influence of price perception and perceived performance risk on showrooming attitudes through means of contact motivation, price perception had a statistically significant and positive impact on means of contact motivation, whereas perceived performance risk did not have a statistically significant impact on it, with the relevant hypothesis rejected. Conclusions - These analysis results imply that the ultimate goal of consumers is to maximize their shopping benefits by selectively and strategically taking advantage of different channels in a complementary manner. This study presents many implications for distributors to encourage a deep understanding of showrooming consumers who have complicated consumption behaviors and to build channel integration strategies. This study has limitations in theoretical and practical implications. Therefore, subsequent studies need to focus on verifying that showrooming activities are based on reasonable and planned decisions by applying the theory of reasoned or planned behavior. In addition, the scope of the study should expand to include web showrooming, where consumers conduct product research online and purchase offline.

Effects of Interactions between the Concrete Deck and Steel Girders on the Dynamic Behavior of Simply Supported Skew Bridges (주형과 상판과의 상호작용이 단순 사교의 동적거동에 미치는 영향)

  • Moon, Seong-Kwon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.593-604
    • /
    • 2007
  • Although composite construction has more mechanical advantages compared to noncomposite construction, the design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the validity of the application of noncomposite construction to skew bridges was checked. Also, the effects of interactions between the concrete deck and steel girders such as composite construction, partial composite construction, and noncomposite construction on the dynamic characteristics and dynamic behaviors of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. Although the slip at the interfaces between the concrete deck and steel girders results in the reduction of seismic total base shear in the transverse direction due to period elongation, it causes an undesirable behavior of skew bridges by the modification in mode shapes and distributions of stiffness. Shear connectors placed by minimum requirements for partial composite action have an effect on reducing the girder stresses and deck stresses; except case of some skew bridges, the magnitude of the girder stresses and deck stresses obtained from partial composite skew bridges is similar to or slightly more than those acquired from composite skew bridges.

An Experimental Study on the Structural Behavior of Concrete Columns Confined with Welded Reinforcement Grids (용접 띠철근 보강된 콘크리트 기둥의 역학적 거동에 관한 실험적 연구)

  • Choi, Chang-Sik;Saatcioglu, Murat
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.187-196
    • /
    • 1999
  • An experimental investigation was conducted to study the structural behavior of concrete columns confined with welded grids. The full-scale columns with different volumetric ratio, spacing and arrangement of welded reinforcement grids were tested under simulated seismic loading. The columns were subjected to constant axial compression of approximately 20% or 40% of their capacities accompanied by incrementally increasing lateral deformation reversals. The results indicate that the welded reinforcement grid can be used effectively as confinement reinforcement provided that the steel used, have sufficient ductility and the welding process employed does not alter the strength and elongation characteristics of steel. The grids improved the structural performance of columns, which developed lateral drift ratios in excess of 3% with the spacing and volumetric ratio of transverse reinforcement similar to those required by the ACI 318-95 Building Code. Drift capacity further increased when grids with larger number of cells were used. Furthermore, the use of grids reduced congesting of reinforcement while the dimensional accuracy provided perfect support to longitudinal reinforcement.