• Title/Summary/Keyword: Seismic characteristics

Search Result 1,439, Processing Time 0.029 seconds

Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.467-485
    • /
    • 2015
  • This paper presents a comprehensive work on determination of yield base shear coefficient and displacement ductility factor of three to eight story actual reinforced concrete buildings, instead of using generic frames. The building data is provided by a walkdown survey in different locations of the pilot areas. Very detailed three dimensional models of the selected buildings are generated by using the data provided in architectural and reinforcement projects. Capacity curves of the buildings are obtained from nonlinear static pushover analyses and each capacity curve is approximated with a bilinear curve. Characteristic points of capacity curve, the yield base shear capacity, the yield displacement and the ultimate displacement capacity, are determined. The calculated values of the yield base shear coefficients and the displacement ductility factors for directions into consideration are compared by those expected values given in different versions of Turkish Seismic Design Code. Although having sufficient lateral strength capacities, the deformation capacities of these typical mid-rise reinforced concrete buildings are found to be considerably low.

Lateral stiffness of reinforced concrete flat plates with steps under seismic loads

  • Kim, Sanghee;Kang, Thomas H.K.;Kim, Jae-Yo;Park, Hong-Gun
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.891-906
    • /
    • 2014
  • The purpose of this study is to propose a modification factor to reflect the lateral stiffness modification when a step is located in flat plates. Reinforced concrete slabs with steps have different structural characteristics that are demonstrated by a series of structural experiment and nonlinear analyses. The corner at the step is weak and flexible, and the associated rotational stiffness degradation at the corner of the step is identified through analyses of 6 types of models using a nonlinear finite element program. Then a systematic analysis of stiffness changes is performed using a linear finite element procedure along with rotational springs. The lateral stiffness of reinforced concrete flat plates with steps is mainly affected by the step length, location, thickness and height. Therefore, a single modification factor for each of these variables is obtained, while other variables are constrained. When multiple variables are considered, each single modification factor is multiplied by the other. Such a method is verified by a comparative analysis. Finally, a complex modification factor can be applied to the existing effective slab width.

A Study on the Reliability Evaluation of the Cross-well Seismic Travel-time Tomography (시추공 탄성파 주시 토모그래피의 신뢰도 평가에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.330-335
    • /
    • 2010
  • In order to estimate the confidence level of the velocity distribution shown in a velocity image reconstructed from a travel-time tomography, the ray coverage and the inversion characteristics of the system matrix were investigated. The targets of the analysis is the first arrival travel-time, the raypath information, and the resulting velocity model. The ray coverage, degree of ray and model coupling, was estimated by the number of rays and total ray length in a velocity grid, and information regarding the resolution and uncertainties involved in the reconstructed velocity model was derived from the results of the SVD analysis of the system matrix that relates the data space (first arrival travel times) to the model space (velocity distribution in tomogram).

3D Simulation of Earthquake Ground Motion Using Locally Variable Time-Step Finite-Difference Method

  • Kang, Tae-Seob;Baag, Chang-Eob
    • Proceedings of the International Union of Geodesy And Geophysics Korea Journal of Geophysical Research Conference
    • /
    • 2003.05a
    • /
    • pp.18-18
    • /
    • 2003
  • Three-dimensional finite-difference simulation of earthquake ground motion is performed using a locally variable time-step (LVTS) scheme matching with discontinuous grids. Discontinuous grids in three directions and extension of the discontinuous grids' boundary to the free-surface in the LVTS scheme minimize the cost of both the computational memory and the CPU time for models like the localized sedimentary basin. A simplified model of sedimentary basin is dealt to show the feasibility and efficiency of the LVTS scheme. The basin parameters are examined to understand the main characteristics on ground-motion response in the basin. The results show that the seismic energy is concentrated on a marginal area of the basin far from the source. This focusing effect is mainly due to the constructive interference of the direct S-wave with the basin-edge induced surface waves. The ground-motion amplification over the deepest part of the basin is relatively lower than that above the shallow basin edge. Therefore the ground-motion amplification may be more related to the source azimuth or the direction of the incident waves into the basin rather than the depth of it.

  • PDF

Random Response Analysis of Base Isolated Nuclear Container System (기초분리된 원전 격납구조물의 무작위 반응해석)

  • 홍원기;전제성;유광호
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.145-150
    • /
    • 1994
  • Seismic isolation in ordinary buildings has been successively adapted to provide flexibility for the reduction of base shear forces and its concept is accepting wide agreement in lengthening the natural, period to lessen the spectral acceleration transmitted into the structure. However, one of difficulties in implementing the innovative concept to nuclear structures is due to more severe requirements in both understanding and predicting the characteristics of isolators and the behavior of cushioned structures, Stochastic analysis has been carried out to investigate the response of base isolated nuclear containers to the random earthquake ground motion.

  • PDF

Structural damping for soil-structure interaction studies

  • Lutes, Loren D.;Sarkani, Shahram
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • A soil-structure interaction formulation is used here which is based on consideration of the dynamics of the structure with a free, rather than a fixed, base. This approach is shown to give a quite simple procedure for coupling the dynamic characteristics of the structure to those of the foundation and soil in order to obtain a matrix formulation for the complete system. In fixed-base studies it is common to presume that each natural mode of the structure has a given fraction of critical damping, and since the interaction formulation uses a free-base model, it seems natural for this situation to assign the equal modal damping values to free-base modes. It is shown, though, that this gives a structural model which is significantly different than the one having equal modal damping in the fixed-base modes. In particular, it is found that the damping matrix resulting in equal modal damping values for free-based modes will give a very significantly smaller damping value for the fundamental distortional mode of the fixed-base structure. Ignoring this fact could lead one to attribute dynamic effects to interaction which are actually due to the choice of damping.

Capacity design by developed pole placement structural control

  • Amini, Fereidoun;Karami, Kaveh
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.147-168
    • /
    • 2011
  • To ensure safety and long term performance, structural control has rapidly matured over the past decade into a viable means of limiting structural responses to strong winds and earthquakes. Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this investigation, application of improved capacity demand diagram method in the control of structural system is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function that defines values of coefficient matrices providing the placement of actuators and optimal control forces. The ground acceleration is modified under induced control forces. Due to this, performance of structure based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure. With small energy consumption characteristics, semi-active devices are especially attractive solutions for limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure employing the semi-active control devices is applied. In comparison to the widely used linear quadratic regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of structural responses during large earthquakes.

A Study on the Effects of Sample Preparation on Liquefaction Estimation Using Cyclic Triaxial Test Conditions (시편의 성형방법이 반복삼축압축시험을 이용한 지반의 액상화 평가에 미치는 영향에 관한 연구)

  • 이익효;김동수;김준석;황지훈;서성호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The liquefaction potential of saturated sands under seismic loading conditions has been carefully considered by many investigations. Typical of these investigations is the laboratory determination of cyclic strength of sands by means of cyclic triaxial tests. This study was conducted to investigate the effects of the method of sample preparation on the liquefaction characteristics of remolded samples of saturated uniform sands. Cyclic triaxial tests were performed on saturated uniform sand compacted to the same density by 3 different procedures of pluvial compaction through air, pluvial compaction through water and vibratory compaction. It was validated that the cyclic stress ratio of remolded saturated uniform sands by different compaction procedures at the same density was very different.

Simultaneous optimal damper placement using oil, hysteretic and inertial mass dampers

  • Murakami, Yu;Noshi, Katsuya;Fujita, Kohei;Tsuji, Masaaki;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.261-276
    • /
    • 2013
  • Oil, hysteretic and inertial mass dampers are representatives of passive dampers used for smart enhancement of seismic performance of building structures. Since oil dampers have a nonlinear relief mechanism and hysteretic dampers possess nonlinear restoring-force characteristics, several difficulties arise in the evaluation of buildings including such dampers. The purpose of this paper is to propose a practical method for simultaneous optimal use of such dampers. The optimum design problem is formulated so as to minimize the maximum interstory drift under design earthquakes in terms of a set of damper quantities subject to an equality constraint on the total cost of dampers. The proposed method to solve the optimum design problem is a successive procedure which consists of two steps. The first step is a sensitivity analysis by using nonlinear time-history response analyses, and the second step is a modification of the set of damper quantities based upon the sensitivity analysis. Numerical examples are conducted to demonstrate the effectiveness and validity of the proposed design method.

Distribution and Characteristics of the Sedimentary Basin Offshore San-in to Tsushima Islands (일본 산닌-쓰시마 해양에 존재하는 퇴적분지의 분포와 특성)

  • Park Se-Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.34-39
    • /
    • 2004
  • This article discusses stratigraphy and geological history of continental shelf area covering of offshore San-in to Tsushima islands. Geological data from 5 wells and detailed seismic surveys indicate that sediments in the studied area are divided into 4 stratigraphic groups ranging from Oligocene to Tertiary in age, namely X, H, K, and D groups in ascending order. The oldest X group of Oligocene time comprises paralic sediments including volcanics deposited in the initial stage of basin-formation. N group of mainly lower Miocene time consists of deep marine sediment, representing the highest stage of transgression. Sediments of the K group of middle Miocene time show distinct off-lapping depositional pattern during the basinfilling stage. The youngest D group covers these older groups unconformably. Strong deformation of sediments prior to the deposition of the D group formed many anticlinal structures. Five exploratory wells were drilled at the selected structures, where only minor gas shows were encountered. The area provides the enough palaeotemperature to mature the source rocks at moderate depth.

  • PDF