• Title/Summary/Keyword: Seismic analysis

Search Result 4,148, Processing Time 0.034 seconds

Characteristics of Large-Scale Fault Zone and Quaternary Fault Movement in Maegok-dong, Ulsan (울산 매곡동 일대의 대규모 단층대 특성과 제4기 단층운동)

  • Cho, Jin-Hyuck;Kim, Young-Seog;Gwon, Sehyeon;Edwards, Paul;Rezaei, Sowreh;Kim, Taehyung;Lim, Soon-Bok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.485-498
    • /
    • 2015
  • Structural analysis for a large-scale fault in Maegok-dong, Ulsan, was carried out based on filed-works to investigate the geometric and kinematic characteristics of the fault as well as its Quaternary slip. As results, a series of repeated stratigraphy, minor faults, fracture zones, and deformation band clusters are observed over a distance of about 100 m in the first studied site consisting of sedimentary rocks, which may indicate the damage zone of a large-scale fault in this site. In the second site, mainly composed of granitic clastic rocks, a large-scale thrust fault is expected based on low-angle dipping faults showing branched and/or merged patterns. Age of the last slip on this fault was restrained as after 33,275 ± 355 yr BP based on radiocarbon dating for organic material included in the gouge zone. Dimension of fault damage zone, dominant sense of slip, and age of the slip event associated with the fault suggest that these structures have a close relationship with the Ulsan Fault and/or Yeonil Tectonic Line, which are well-known large-scale neotectonic structural features around the study area. Therefore, it is necessary to study the characteristics of the faults in detail based on structural geology and paleoseismology in order to ensure seismic and geologic stability of the buildings under construction, and to prevent geologic hazards in this area.

Analysis of 6-Beam Accelerometer Using (111) Silicon Wafer by Finite Element Method ((111) 실리콘 웨이퍼를 이용한 6빔 가속도센서의 유한요소법 해석)

  • Sim, Jun-Hwan;Kim, Dong-Kwon;Seo, Chang-Taeg;Yu, In-Sik;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.346-355
    • /
    • 1997
  • In this paper, the analyses of the stress disturibution and frequency characteristics of silicon microstructures for an accelerometer were performed using the general purpose finite element simulation program, ANSYS. From the analyses, we determined the parameter values of a new 6-beam piezoresistive accelerometer applicable to the accelerometer's specification in airbag system of automobile. Then, the mass paddle radius, beam length, beam width, and beam thickness of the designed accelerometer were$500{\mu}m$, $350{\mu}m$, $100{\mu}m$, and $5{\mu}m$, respectively and two different seismic masses with 0.4 mg and 0.8 mg were defined on the same sensor structure. The designed 6- beam accelerometers were fabricated on the selectively diffused (111)-oriented $n/n^{+}/n$ silicon substrates and the characteristics of the fabricated accelerometers were investigated. Then, we used a micromachining technique using porous silicon etching method for the formation of the micromechanical structure of the accelerometer.

  • PDF

Case Study on the Application of Chain Saw Machine for the Underground Marble Quarrying (갱내 대리석 채석을 위한 체인쏘머신 적용 사례연구)

  • Ju, Jaeyeol;Lee, Kwangpyo;Kim, Jaedong
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.180-191
    • /
    • 2013
  • The purpose of this research was to find an optimal quarrying for marble by analyzing the applicability and the work efficiency of a chain saw machine newly introduced in the underground Baekwoon mine. From the test results of the physical properties of Baekwoon marble, which affects the efficiency of rock cutting, it was found to have similar physical characteristics as the ones which are now being produced in the other areas in Korea. And especially it shows isotropic property, which can be thought to be advantageous as a dimensional stone. To check the long-term quality of the marble as a stone material, several tests such as corrosion resistance test and abrasion test were carried out. It was found to be vulnerable to acid rain with decrease of weight and seismic wave velocity after applying artificial rain at pH 5.6 for 50 times. The percentage of wear from abrasion test was 22.67%. The working time and cutting speed of the chain saw machine were recorded and analyzed during the test-run at the quarry. The overall work cycle was assorted into 9 unit operations and the operating time per each unit was drawn. The operating times for the two cutting patterns, which could be possibly applicable to the work site, were compared. The results indicated that the pattern B, that the cutting sequence was set to minimize the movement of the machine, showed 6% less working hours than the pattern A, which first cuts the outer boundary. With cutting pattern analysis, the ore body in the Baekwoon mine was 3 dimensionally modeled and a quarrying plan considering the existing conditions of the marble was suggested.

Sequence Stratigraphy of Late Quaternary Deposits in the Southeastern Continental Shelf, Korea (한국 남동 대륙붕 후 제4기 퇴적층의 시퀀스 층서)

  • 유동근;이치원;최진용;박수철;최진혁
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.369-379
    • /
    • 2003
  • Analysis of high-resolution seismic profiles and sediment data from the southeastern continental shelf of Korea reveals that the late Quaternary deposits consist of a set of lowstand (LST), transgressive (TST), and highstand systems tracts (HST) that corresponds to the sea-level change after the Last Glacial Maximum. LST (Unit I) above the sequence boundary consists of sandy mud or muddy sand deposited during the last glacial period and is confined to the shelf margin and trough region. TST (Unit II) between transgressive surface and maximum flooding surface consists of sandy sediments deposited during the postglacial transgression (15,000-6,000 yr BP). Although TST is widely distributed on the shelf, it is much thinner than LST and HST. On the basis of distribution pattern, TST can be divided into three sub-units: early TST (Unit IIa) on the shelf margin, middle TST (Unit IIb) on the mid-shelf, and late TST (Unit IIc) on the inner shelf, respectively. These are characterized by a backstepping depositional arrangement. HST(Unit III) above the maximum flooding surface is composed of the fine-grained sediments deposited during the last 6000 yrs when sea level was close to the present level and its distribution is restricted to the inner shelf along the coast.

Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data (다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략)

  • Hwang, Jongha;Oh, Ju-Won;Lee, Jinhyung;Min, Dong-Joo;Jung, Heechul;Song, Youngsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.38-49
    • /
    • 2020
  • Full-waveform inversion (FWI) is an optimization process of fitting observed and modeled data to reconstruct high-resolution subsurface physical models. In acoustic FWI (AFWI), pressure data acquired using a marine streamer has mainly been used to reconstruct the subsurface P-wave velocity models. With recent advances in marine seismic-acquisition techniques, acquiring multi-component data in marine environments have become increasingly common. Thus, AFWI strategies must be developed to effectively use marine multi-component data. Herein, we proposed an AFWI strategy using horizontal and vertical particle-acceleration data. By analyzing the modeled acoustic data and conducting sensitivity kernel analysis, we first investigated the characteristics of each data component using AFWI. Common-shot gathers show that direct, diving, and reflection waves appearing in the pressure data are separated in each component of the particle-acceleration data. Sensitivity kernel analyses show that the horizontal particle-acceleration wavefields typically contribute to the recovery of the long-wavelength structures in the shallow part of the model, and the vertical particle-acceleration wavefields are generally required to reconstruct long- and short-wavelength structures in the deep parts and over the whole area of a given model. Finally, we present a sequential-inversion strategy for using the particle-acceleration wavefields. We believe that this approach can be used to reconstruct a reasonable P-wave velocity model, even when the pressure data is not available.

Correlations of Earthquake Accelerations and LPIs for Liquefaction Risk Mapping in Seoul & Gyeonggi-do Area based on Artificial Scenarios (서울, 경기지역의 시나리오별 액상화 위험지도 작성을 위한 지진가속도와 LPI 상관관계 분석)

  • Baek, Woohyun;Choi, Jaesoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.5-12
    • /
    • 2019
  • On November 15, 2017, a unpredictable liquefaction damage was occurred at the $M_L=5.4$ Pohang earthquake and after, many researches have been conducted in Korea. In Korea, where there were no cases of earthquake damage, it has been extremely neglectable in preparing earthquake risk maps and building earthquake systems that corresponded to prevention and preparation. Since it is almost impossible to observe signs and symptoms of drought, floods, and typhoons in advance, it is very effective to predict the impacts and magnitudes of seismic events. In this study, 14,040 borehole data were collected in the metropolitan area and liquefaction evaluation was performed using the amplification factor. Based on this data, liquefaction hazard maps were prepared for ground accelerations of 0.06 g, 0.14 g, 0.22 g, and 0.30 g, including 200years return period to 4,800years return period. Also, the correlation analysis between the earthquake acceleration and LPI was carried out to draw a real-time predictable liquefaction hazard map. As a result, 707 correlation equations in every cells in GIS map were proposed. Finally, the simulation for liquefaction risk mapping against artificial earthquake was performed in the metropolitan area using the proposed correlation equations.

A study for the performance evaluation of concrete block assembly wall without using mortar (무모르타르로 건식조립된 콘크리트블록 벽체의 성능평가 연구)

  • Lee, Joong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.203-210
    • /
    • 2019
  • A recent earthquake on the Korean Peninsula caused much damage to masonry buildings, and research on performance evaluation has been underway. A masonry building is generally constructed using wet construction and is affected by temperature, which reduces the efficiency of the construction. In this study, we propose a dry construction technique for assembling concrete blocks without using mortar and evaluated its performance through experimental and analytical research. To evaluate the performance, experiments were carried out for the prismatic compressive strength, direct terminal strength, and diagonal tensile strength of the dry construction wall. The adequacy of the cross section shape was also reviewed through FEM analysis. The results show that the compressive strength and diagonal tensile strength could exert a certain intensity or higher. Furthermore, the H-type module of a key block acted as a shear key for the entire concrete block, which resulted in excellent shear strength performance. In addition, the shape and thickness of the main block have a major effect on the strength performance of each block. Therefore, an optimal shape and the proposed dry construction method could be applied to replace the wet method by studying the construction or seismic performance of the proposed method.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

A Study on Reliquefaction Behavior of Railway Embankment Using 1g Shaking Table Test (1g 진동대 실험을 이용한 철도 제방의 재액상화 거동 연구)

  • Chae, Minhwan;Yoo, Mintaek;Lee, Il-Wha;Lee, Myungjae
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.71-81
    • /
    • 2021
  • The purpose of this study is liquefaction phenomenon was simulated using the 1g shaking table test. Analysis of liquefaction and Re-liquefaction behavior according to the ground conditions was analyzed when an embankment exists above the ground. The soil used in the experiment was silica sand and the ground composition was a liquefied layer of 50cm (Case 1), a non-liquefied layer of 17.5cm and a liquefied layer of 32.5cm (Case 2). The embankment was formed by fixing the height of 10cm and the slope of the slope at a ratio of 1:1.8. For seismic waves, excitation of a 5Hz sine wave was performed for 8 seconds, and a total of 5 case excitations were performed. In Case 1, it was confirmed that liquefaction occurred at all depths during the first vibration excitation at the free-field and that liquefaction did not occur at all depths except 5cm at the third vibration excitation. At the center of the embankment, liquefaction occurred up to a depth of 20cm during the first vibration excitation, and it was confirmed that liquefaction did not occur at all depths except for a depth of 5cm during the second vibration excitation.

A Case Study on the Cause Analysis of Land creep Using Geophysical Exploration (물리탐사를 활용한 땅밀림 원인분석의 사례적 연구)

  • Jae Hyeon Park;Gyeong Mi Tak;Kook Mook Leem
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.382-392
    • /
    • 2023
  • Recent reports have indicated a rapid increase in the frequency of sediment disasters due to climate change and other changes in the geological environment. Given this alarming situation and the recent increase in the frequency of land creep in Korea, systematic and efficient recovery and management of land creep areas is essential. The purpose of this study is to identify disaster vulnerability by conducting a physical exploration of land creep in San 4-1, Jayeon-ri, Gaegun-myeon, Yangpyeong-gun, Gyeonggi-do, and examine stability by identifying the overall geological structure of the affected ground. In addition, drilling surveys are conducted to verify the reliability of the measured data. The results of the study reveal that low specific resistance abnormalities are distributed in the upper part of the soil layer and weathering zone and that this section is a 50-120 m exploration line. It is also confirmed to be a low-hardness ground area where tensile cracks are observed. Therefore, there is a need for research focused on developing measures to reduce economic and social damage within the domestic context by continuously monitoring indicators of land creep and identifying land creep risks.