• Title/Summary/Keyword: Seismic Safety

Search Result 998, Processing Time 0.028 seconds

Seismic Response Analysis of the Concrete Face Rockfill Dam (콘크리트표면차수벽령 석괴댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.147-154
    • /
    • 2001
  • In this study, comprehensive seismic performance analysis were performed for the concrete face rockfill dam(CFRD) designed seismic coefficient method(0. 10g). The static and pseudo-static FEM analysis, limited equilibrium method and dynamic FEM analysis were used for the dam safety analysis. The results of the seismic analysis were that the minimum factor of safety of down slope was 1.2 and horizontal displacement increased 8cm and vertical displacement increased 1.2cm at dam crest rather than those of static condition. The model dam did not show any serious tai lure in seismic stabi1ity for 0.13g. And much more research is still necessary in seismic safety of CFRD.

  • PDF

Effect of brick infill panel on the seismic safety of reinforced concrete frames under progressive collapse

  • Tavakoli, Hamidreza;Akbarpoor, Soodeh
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.749-764
    • /
    • 2014
  • Structural safety has always been a key preoccupation for engineers responsible for the design of civil engineering projects. One of the mechanisms of structural failure, which has gathered increasing attention over the past few decades, is referred to as 'progressive collapse' which happens when one or several structural members suddenly fail, whatever the cause (accident, attack, seismic loading(.Any weakness in design or construction of structural elements can induce the progressive collapse in structures, during seismic loading. Masonry infill panels have significant influence on structure response against the lateral load. Therefore in this paper, seismic performance and shear strength of R.C frames with brick infill panel under various lateral loading patterns are investigated. This evaluation is performed by nonlinear static analysis. The results provided important information for additional design guidance on seismic safety of RC frames with brick infill panel under progressive collapse.

Insights gained from applying negate-down during quantification for seismic probabilistic safety assessment

  • Kim, Ji Suk;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2933-2940
    • /
    • 2022
  • Approximations such as the delete-term approximation, rare event approximation, and minimal cutset upper bound (MCUB) need to be prudently applied for the quantification of a seismic probabilistic safety assessment (PSA) model. Important characteristics of seismic PSA models indicate that preserving the success branches in a primary seismic event tree is necessary. Based on the authors' experience in modeling and quantifying plant-level seismic PSA models, the effects of applying negate-down to the success branches in primary seismic event trees on the quantification results are summarized along with the following three insights gained: (1) there are two competing effects on the MCUB-based quantification results: one tending to increase and the other tending to decrease; (2) the binary decision diagram does not always provide exact quantification results; and (3) it is identified when the exact results will be obtained, and which combination provides more conservative results compared to the others. Complicated interactions occur in Boolean variable manipulation, approximation, and the quantification of a seismic PSA model. The insights presented herein can assist PSA analysts to better understand the important theoretical principles associated with the quantification of seismic PSA models.

Seismic Performance Assessment of Atmospheric Surge Tank (노출형 조압수조의 해석모델별 내진성능평가)

  • Kim, Yongon;Ok, Seung-Yong;Kim, Il Gyu;Ryu, Seonho;Bae, Jungjoo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.67-73
    • /
    • 2016
  • This study investigates the seismic performance of the surge tank which is of the atmospheric type and constructed above the ground. For that purpose, three different numerical models of the surge tank have been taken into account. Two models are constructed to describe the surge tank with different support conditions: one is to model all supports as fixed, and the other is to use spring element for the rock conditions. The third model is constructed to describe not only the surge tank with spring element of the rocks but also the vertical waterway tunnel. Through the time-history analysis of the surge tank subjected to three artificially excited ground motions, it is demonstrated that there can be much difference between the three models of our interest according to the support conditions and inclusion of the vertical waterway tunnel. However, their seismic performances still remain below the safety criteria, i.e., dynamic allowable stress. Also, the numerical results let us know where the critical sections occur. These results could be used to develop the efficient seismic enhancement method for the surge tank.

Aanalysis of Geophysical exploration tendency of C.F.R.D (표면차수벽 석괴댐의 물리탐사 경향 분석)

  • Kim, Jae-Hong;Shin, Dong-Hoon;Im, En-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.871-876
    • /
    • 2010
  • When surface Concrete Face Rock fill Dam constructs than existent center core type rock fill dam, it is much prevalent form in domestic these day by quality control of that is profitable and weather condition etc. of coreZone. C.F.R.D is less research about seismic survey(Refractional Seismic Prospectin, Resistivity Prospecting) of levee body than fill dam. Thus as C.F.R.D seismic survey is less, safety of that consist is short most development flue is high reason. That is not checking target of minuteness safety diagnosis and so on by short operation period. Wish to analyze inquiry incidental and difference with center core type dam and acquire C.F.R.D preservation administration upper necessary inquiry condition forward hereafter.

  • PDF

Seismic collapse probability of eccentrically braced steel frames

  • Qi, Yongsheng;Li, Weiqing;Feng, Ningning
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.37-52
    • /
    • 2017
  • To quantitatively assess the safety against seismic collapse of eccentrically braced steel frame (EBSF) system, 24 typical EBSFs with K-shape and V-shape braces with seismic precautionary intensities 8 and 9 were designed complying with China seismic design code and relative codes to constitute archetype space of this structure system. In the archetype space, the collapse probability of the structural system under maximum considered earthquakes (MCE) was researched. The results show that the structures possess necessary safety against seismic collapse when they respectively encounter the maximum considered earthquakes corresponding to their seismic precautionary levels, and their collapse probabilities increase with increasing seismic precautionary intensities. Moreover, the EBSFs with V-shape braces have smaller collapse probability, thus greater capacity against seismic collapse than those with K-shape braces.

Seismic Design of an Arch Bridge (아치교의 내진설계)

  • 국승규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.101-106
    • /
    • 1997
  • In order to check the safety against earthquakes a seismic design of an arch bridge is carried out in this study according to the Division V (Seismic Design) of the "Standard for the Roadway Bridges", where the application procedures including the determination of coefficients, the analysis method as well as the safety checks are provided. provided.

  • PDF

Feasibility Study of Seismic Probabilistic Risk Assessment for Multi-unit NPP with Seismic Failure Correlation (다수기의 확률론적 지진안전성 평가를 위한 지진손상 상관계수의 적용)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.319-325
    • /
    • 2021
  • The 2011 East Japan Earthquake caused accidents at a number of nuclear power plants in Fukushima, highlighting the need for a study on the seismic safety of multiple NPP (Nuclear Power Plant) units. In the case of nuclear power plants built on a site that shows a similar seismic response, there is at least a correlation between the seismic damage of structures, systems, and components (SSCs) of nuclear power plants. In this study, a probabilistic seismic safety assessment was performed for the loss of essential power events of twin units. To derive an appropriate seismic damage correlation coefficient, a probabilistic seismic response analysis was performed. Using the external event mensuration system program, we analyzed the seismic fragility and seismic risk by composing a failure tree of multiple loss of essential power events. Additionally, a comparative analysis was performed considering the seismic damage correlation between SSCs as completely independent and completely dependent.

Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies (지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구)

  • Chai, Young-Suk;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

Seismic performance evaluation of a three-dimensional unsymmetrical reinforced concrete building

  • Lim, Hyun-Kyu;Kang, Jun Won;Lee, Young-Geun;Chi, Ho-Seok
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.2
    • /
    • pp.143-156
    • /
    • 2016
  • Reinforced concrete (RC) structures require advanced analysis techniques for better estimation of their seismic responses, especially in the case of exhibiting complex three-dimensional coupling of torsional and flexural behaviors. This study focuses on validating a numerical approach for evaluating the seismic response of a three-dimensional unsymmetrical RC structure through the participation in the SMART 2013 international benchmark program. The benchmark program provides material properties, detailed drawings of the RC structure, and input ground motions for the seismic response evaluation. In this study, nonlinear constitutive models of concrete and rebar were formed and local tests were conducted to verify the constitutive models in finite element analysis. Elastic calibration of the finite element model of the SMART 2013 RC structure was performed by comparing numerical and experimental results in modal and linear time history analyses. Using the calibrated model, nonlinear earthquake analysis and seismic fragility analysis were performed to estimate the behavior and vulnerability of the RC structure with various ground motions.