• Title/Summary/Keyword: Seismic Isolation Test

Search Result 109, Processing Time 0.033 seconds

Roller Design of IRB Seismic Isolation Device Using Test Evaluation : Part II. Heat Treatment of Material (시험평가법을 이용한 IRB 면진장치 롤러 설계 : Part 2. 소재 열처리)

  • Park, Young-Gee;Ha, Sung Hoon;Seong, Min-Sang;Jeon, Junchul;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.4
    • /
    • pp.332-337
    • /
    • 2013
  • This paper presents a subsequent research work on the roller design of IRB(isolation roller bearing) seismic isolation device presented in Part 1 by focusing on heat treatment. The hardness and friction factor are very important factors of material and after-treatment process selection. Normally, roller bearing consists of roller and retainer. The roller gets high pressure constantly, while the retainer gets tensile and compressive stress. Therefore, sensitive material selection and heat treatment of each part is quite important. In this experimental evaluation, carbon steel, chrome special steel and others are employed and their characteristics after heat treatment are identified. Each material is prepared by refining high frequency heat treatment. The friction factor and static load capacity of manufactured material are experimentally identified and destructive test of material is processed. Optimal material and heat treatment conditions for IRB roller bearing are determined based on experiment results.

An Experimental Study of the Seismic Isolation Systems (or Equipment Isolation : Evaluation of Damping Effect (기기면진을 위한 면진장치의 거동분석실험 (II) : 감쇠특성 분석)

  • 전영선;김민규;최인길;김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.411-418
    • /
    • 2003
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. for this Purpose, shaking table tests were performed. The natural rubber bearing (NRB) and high damping rubber bearing (HDRB) were selected for the isolation. Peak ground acceleration, damping characteristics of isolation system and frequency contents of selected earthquake motions were considered. finally, it is presented that the NRB and HDRB systems are effective for the small equipment isolation and the damping of isolation systems can be affected to the seismic isolation effect.

  • PDF

Vibration characteristic of rubber isolation plate-shell integrated concrete liquid-storage structure

  • Cheng, Xuansheng;Qi, Lei;Zhang, Shanglong;Mu, Yiting;Xia, Lingyu
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.691-703
    • /
    • 2022
  • To obtain the seismic response of lead-cored rubber, shape memory alloy (SMA)-rubber isolation Plate-shell Integrated Concrete Liquid-Storage Structure (PSICLSS), based on a PSICLSS in a water treatment plant, built a scale experimental model, and a shaking table test was conducted. Discussed the seismic responses of rubber isolation, SMA-rubber isolation PSICLSS. Combined with numerical model analysis, the vibration characteristics of rubber isolation PSICLSS are studied. The results showed that the acceleration, liquid sloshing height, hydrodynamic pressure of rubber and SMA-rubber isolation PSICLSS are amplified when the frequency of seismic excitation is close to the main frequency of the isolation PSICLSS. The earthquake causes a significant leakage of liquid, at the same time, the external liquid sloshing height is significantly higher than internal liquid sloshing height. Numerical analysis showed that the low-frequency acceleration excitation causes a more significant dynamic response of PSICLSS. The sinusoidal excitation with first-order sloshing frequency of internal liquid causes a more significant sloshing height of the internal liquid, but has little effect on the structural principal stresses. The sinusoidal excitation with first-order sloshing frequency of external liquid causes the most enormous structural principal stress, and a more significant external liquid sloshing height. In particular, the principal stress of PSICLSSS with long isolation period will be significantly enlarged. Therefore, the stiffness of the isolation layer should be properly adjusted in the design of rubber and SMA-rubber isolation PSICLSS.

Vertical equipment isolation using piezoelectric inertial-type isolation system

  • Lu, Lyan-Ywan;Lin, Ging-Long;Chen, Yi-Siang;Hsiao, Kun-An
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.195-211
    • /
    • 2020
  • Among anti-seismic technologies, base isolation is a very effective means of mitigating damage to structural and nonstructural components, such as equipment. However, most seismic isolation systems are designed for mitigating only horizontal seismic responses because the realization of a vertical isolation system (VIS) is difficult. The difficulty is primarily due to conflicting isolation stiffness demands in the static and dynamic states for a VIS, which requires sufficient rigidity to support the self-weight of the isolated object in the static state, but sufficient flexibility to lengthen the isolation period and uncouple the ground motion in the dynamic state. To overcome this problem, a semi-active VIS, called the piezoelectric inertia-type vertical isolation system (PIVIS), is proposed in this study. PIVIS is composed of a piezoelectric friction damper (PFD) and a leverage mechanism with a counterweight. The counterweight provides an uplifting force in the static state and an extra inertial force in the dynamic state; therefore, the effective vertical stiffness of PIVIS is higher in the static state and lower in the dynamic state. The PFD provides a controllable friction force for PIVIS to further prevent its excessive displacement. For experimental verification, a shaking table test was conducted on a prototype PIVIS controlled by a simple controller. The experimental results well agree with the theoretical results. To further investigate the isolation performance of PIVIS, the seismic responses of PIVIS were simulated numerically by considering 14 vertical ground motions with different characteristics. The responses of PIVIS were compared with those of a traditional VIS and a passive system (PIVIS without control). The numerical results demonstrate that compared with the traditional and passive systems, PIVIS can effectively suppress isolation displacement in all kinds of earthquake with various peak ground accelerations and frequency content while maintaining its isolation efficiency. The proposed system is particularly effective for near-fault earthquakes with long-period components, for which it prevents resonant-like motion.

Finite Element Analysis and Design of a Lead-Rubber-Bearing System for Seismic Isolation (면진 LRB(Lead Rubber Bearing) 시스템의 유한요소 해석 및 설계)

  • 송우진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.229-232
    • /
    • 1999
  • The seismic isolation technology has appeared to be increasingly necessary for highway brides LNG tank nuclear power plant and building structures in view of recent frequent earthquake vibrations in Korea. Also high-technology industries required effective seismic protection. The LRB(Lead Rubber Bearing) systen has been counted as the most effective way for seismic isolation which is now under development and widely used in industries. Hear the commercial FEM software for nonlinear analysis MARC has provided force-displacement curves on the rubber system. The analysis has been carried out about four cases ; 29.5mm and 59mm horizontal dislacements with/without a center hole. The unknown constants of the strain energy function of Ogden model have been obtained by a tension test,

  • PDF

Shaking Table Test Study on 3-Dimensional Floor Isolation of Main Control Room of Nuclear Power Plant (원전 주제어실 3차원 층면진시스템의 진동대 실험 연구)

  • Lee, Kyung-Jin;Ham, Kyung-Won;Suh, Yong-Pyo;Yoon, Hyun-Do
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.409-416
    • /
    • 2006
  • The seismic characteristics with 3-Dimensional Floor Isolation System have been studied using a shaking table system. In this study, we made two kind of floor system (Type I, Type II) and several seismic tests with and without isolation system were conducted to evaluate 3-Dimensional Floor Isolation Effectiveness. Both type have showed large reduction effectiveness in acceleration, response spectra but Type II have showed lower acceleration and lower first mode in response spectra, compared to type I. On the basis of test results and consideration of application, it is found that type II is more suitable for floor model of main control room of Nuclear Power Plant.

  • PDF

Field testing of a seismically isolated concrete bridge

  • Chang, K.C.;Tsai, M.H.;Hwang, J.S.;Wei, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.241-257
    • /
    • 2003
  • The first seismically isolated structure in Taiwan was completed in early 1999. Seven new bridges of the Second National Freeway located at Bai-Ho area, a region which is considered to be of high seismic risk, have been designed and constructed with lead-rubber seismic isolation bearings. Since this is the first application of seismic isolation method to the practical construction in Taiwan, field tests were conducted for one of the seven bridges to evaluate the assumptions and uncertainties in the design and construction. The test program is composed of ambient vibration tests, forced vibration tests, and free vibration tests. For the free vibration tests, a special test setup composed of four 1000 kN hydraulic jacks and a quick-release mechanism was designed to perform the function of push-and-quick release. Valuable results have been obtained based on the correlation between measured and analytical data so that the analytical model can be calibrated. Based on the analytical correlation, it is concluded that the dynamic characteristics and free vibration behavior of the isolated bridge can be well captured when the nonlinear properties of the bearings are properly considered in the modeling.

Experimental Study on Seismic Performance of Base-Isolated Bridge (지진 격리된 교량의 내진성능에 대한 실험적 연구)

  • Chung, Woo-Jung;Yun, Chung-Bang;Kim, Nam-Sik;Seo, Ju-Won
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.144-153
    • /
    • 1998
  • Base isolation is an innovative design strategy that provides a practical alternative for the seismic design of structures. Base isolators, mainly employed to isolate large structures subjected to earthquake ground excitations and to rehabilitate structures damaged by past earthquakes, deflect and absorb the seismic energy horizontally transmitted to the structures. This study demonstrates that the base isolation system may offer effective performance for bridges during severe seismic events through shaking table tests. Two base isolation system using laminated rubber bearings with and without hydraulic dampers are tested. The test results strongly show that the laminated rubber bearings cause the natural period of the bridge structure increased considerably, which results in the deck acceleration and the shear forces on the piers reduced significantly. The results also demonstrate that the hydraulic dampers enhance the system's capacity in dissipating energy to reduce the relative displacement between the bridge deck and the pier.

  • PDF

The Pseudo-Dynamic Test for the Seismic Retrofit System Utilizing Existing Bridge Bearings (교량의 기존 받침을 활용하는 내진보강시스템의 유사동적 실험)

  • Kwahk, Im-Jong;Cho, Chang-Beck;Kim, Young-Jin;Kwark, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.21-27
    • /
    • 2007
  • In this study, an approach that installs seismic isolation bearings was proposed for the seismic retrofit of the existing bridges. The method that replaces all existing bearings with seismic isolators was proposed already. However, in this study, we recommend to utilize the existing bearings for the benefit of safety and cost. According to our proposal, the seismic isolators do not support vertical loads but they Just function as the period shifter and the horizontal damper. To verify this approach experimentally, the real scale bearings and lead rubber bearings far the real highway bridges were designed and fabricated. And the responses of this isolated bridges to the assumed earthquakes were determined by the pseudo dynamic test scheme. The test results were also compared to the responses computed by the well known structural analysis software to check the reliability of the test. From the test results, we found that the retrofitted bridges using the proposed method showed stable performances under earthquakes.

Nonlinear Analysis Model Development of Seismic Isolator Using Horizontal Seismic Excitation Responses of Isolated Test Structure (면진시험구조물의 수평가진응답을 활용한 면진장치 비선형 해석모델개발)

  • Lee, Jae-Han;Koo, Gyeong-Hoi;Yoo, Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.157-165
    • /
    • 2002
  • The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structural modeling of the isolated structure and isolation bearing. Based on the actual dynamic behaviors and the seismic responses of the test model, linear and bilinear models for isolators are suggested. Seismic analyses are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of isolators.

  • PDF