• Title/Summary/Keyword: Seismic Hazard

Search Result 430, Processing Time 0.022 seconds

Performance Evaluation of Steel Moment Frame Buildings with Different Response Modification Factors (반응수정계수의 영향에 따른 철골조 빌딩의 내진 성능 평가)

  • Lee, Ki-Hak
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.201-208
    • /
    • 2006
  • This study lotuses on the seismic behavior of 3-, 9-, and 20-story steel moment resisting frame (MRF) structures designed in accordance with the 2000 International Building Code using different Response Modification factors (R factors) 8, 9, 10, 11, and 12. For a detailed case study, 30 different structures were evaluated for twenty ground motions representing the hazard level which is equal to a 2% probability exceeding in 50 years (2% in 50 years). The results showed that the current R factors provide conservative designs for the 3- and 9-story buildings for the Collapse Prevention performance objective. However, the 20-story buildings designed without using the minimum requirement of spectral acceleration CS prescribed in the IBC 2000 did not satisfy the seismic performance for Collapse Prevention performance.

  • PDF

Seismic Risk Assessment of Piers Using Fragility Analysis (취약도 분석을 통한 교각의 지진위험도 평가)

  • Lee, Dae-Hyoung;Kim, Hyun-Jun;Park, Chang-Kyu;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.261-268
    • /
    • 2006
  • This study represents results of fragility curve development for 3-span continuous bridge. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. Because of limited number of real time histories from the Korean peninsula, a set of 150 synthetic time histories were generated. Fragility corves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined. This approach may be used in constructing the fragility curves for all of bridge structure and, by extension, in constructing the seismic hazard map.

  • PDF

Predictive Equations of Ground Motions in Korea

  • Noh, Myung-Hyun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.171-179
    • /
    • 2006
  • Predictive equations of ground motions are one of the most important factors in the seismic hazard analysis. Unfortunately, studies on predictive equations of ground motions in Korea had been hampered due to the lack of seismic data. To overcome the lack of data, seismologists adopted the stochastic method based on the seismological model. Korean predictive equations developed by the stochastic method show large differences in their predictions. It was turned out through the analysis of the existing studies that the main sources of the differences are the uncertainties in the (Brune) stress drop and spectral decay rate . Therefore, it is necessary to focus the future research on the reduction of the uncertainties in the two parameters.

  • PDF

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

Upgrading equivalent static method of seismic designs to performance-based procedure

  • Allahvirdizadeh, Reza;Mohammadi, Mohammad Ali
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.849-865
    • /
    • 2016
  • Beside the invaluable advancements in constructing more secure buildings, the post-earthquake inspections have reported considerable damages. In other words, the modern buildings satisfactorily decrease fatalities but the monetary impacts still mostly remain an unsolved concern of the stakeholders, the insurance companies and society together. Therefore, the fundamental target of the researches shifted from current force-based seismic design regulations to the Performance-Based earthquake engineering (PBEE). At the moment, some probabilistic approaches, such as PEER framework have been developed to predict the performance of building at any desired hazard levels. These procedures are so time-consuming, to which many details are needed to be assigned. It causes their usage to be limited. On that account, developing more straightforward methods seems indispensable. The main objective of the present paper is to adapt an equivalent static method in different damage states. Consequently, constant damage spectrums corresponding to different limit states, soil types, ductility and fundamental periods are plotted and tri-linear formulas are proposed for further applications. Moreover, the sensitivity of outcomes to the employed hysteresis model, ductility, viscous damping and site soil type is investigated. Finally, a case study building with moment-resisting R.C. frame is evaluated based on the both of new and current methods to ensure applicability of the proposed method.

Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas (복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가)

  • Kim, Han-Saem;Sun, Chang-Guk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

A new equation based on PGA to provide sufficient separation distance between two irregular buildings in plan

  • Loghmani, Adel;Mortezaei, Alireza;Hemmati, Ali
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.543-553
    • /
    • 2020
  • Past earthquakes experience shows that serious damage or collapse of buildings have dramatically accrued when sufficient separation distance has not been provided between two adjacent structures. The majority of past studies related to the pounding topic indicate that obtaining the gap size between two buildings is able to prevent collision and impact hazards during seismic excitations. Considering minimization of building collisions, some relationships have been suggested to determine the separation distance between adjacent buildings. Commonly, peak lateral displacement, fundamental period and natural damping as well as structural height of two adjacent buildings are numerically considered to determine the critical distance. Hence, the aim of present study is to focus on all mentioned parameters and also utilizing the main characteristic of earthquake record i.e. PGA to examine the lateral displacement of irregular structures close to each other and also estimate the sufficient separation distance between them. Increasing and decreasing the separation distance is inherently caused economical problems due to the land ownership from a legal perspective and pounding hazard as well. Therefore, a new equation is proposed to determine the optimum critical distance. The accuracy of the proposed formula is validated by different models and various earthquake records.

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

Multihazard capacity optimization of an NPP using a multi-objective genetic algorithm and sampling-based PSA

  • Eujeong Choi;Shinyoung Kwag;Daegi Hahm
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.644-654
    • /
    • 2024
  • After the Tohoku earthquake and tsunami (Japan, 2011), regulatory efforts to mitigate external hazards have increased both the safety requirements and the total capital cost of nuclear power plants (NPPs). In these circumstances, identifying not only disaster robustness but also cost-effective capacity setting of NPPs has become one of the most important tasks for the nuclear power industry. A few studies have been performed to relocate the seismic capacity of NPPs, yet the effects of multiple hazards have not been accounted for in NPP capacity optimization. The major challenges in extending this problem to the multihazard dimension are (1) the high computational costs for both multihazard risk quantification and system-level optimization and (2) the lack of capital cost databases of NPPs. To resolve these issues, this paper proposes an effective method that identifies the optimal multihazard capacity of NPPs using a multi-objective genetic algorithm and the two-stage direct quantification of fault trees using Monte Carlo simulation method, called the two-stage DQFM. Also, a capacity-based indirect capital cost measure is proposed. Such a proposed method enables NPP to achieve safety and cost-effectiveness against multi-hazard simultaneously within the computationally efficient platform. The proposed multihazard capacity optimization framework is demonstrated and tested with an earthquake-tsunami example.